yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import pickle
import time
import numpy as np
import torch
import tqdm
from pcdet.models import load_data_to_gpu
from pcdet.utils import common_utils
def statistics_info(cfg, ret_dict, metric, disp_dict):
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
metric['recall_roi_%s' % str(cur_thresh)] += ret_dict.get('roi_%s' % str(cur_thresh), 0)
metric['recall_rcnn_%s' % str(cur_thresh)] += ret_dict.get('rcnn_%s' % str(cur_thresh), 0)
metric['gt_num'] += ret_dict.get('gt', 0)
min_thresh = cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST[0]
disp_dict['recall_%s' % str(min_thresh)] = \
'(%d, %d) / %d' % (metric['recall_roi_%s' % str(min_thresh)], metric['recall_rcnn_%s' % str(min_thresh)], metric['gt_num'])
def eval_one_epoch(cfg, args, model, dataloader, epoch_id, logger, dist_test=False, result_dir=None):
result_dir.mkdir(parents=True, exist_ok=True)
final_output_dir = result_dir / 'final_result' / 'data'
if args.save_to_file:
final_output_dir.mkdir(parents=True, exist_ok=True)
metric = {
'gt_num': 0,
}
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
metric['recall_roi_%s' % str(cur_thresh)] = 0
metric['recall_rcnn_%s' % str(cur_thresh)] = 0
dataset = dataloader.dataset
class_names = dataset.class_names
det_annos = []
if getattr(args, 'infer_time', False):
start_iter = int(len(dataloader) * 0.1)
infer_time_meter = common_utils.AverageMeter()
logger.info('*************** EPOCH %s EVALUATION *****************' % epoch_id)
if dist_test:
num_gpus = torch.cuda.device_count()
local_rank = cfg.LOCAL_RANK % num_gpus
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[local_rank],
broadcast_buffers=False
)
model.eval()
if cfg.LOCAL_RANK == 0:
progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval', dynamic_ncols=True)
start_time = time.time()
for i, batch_dict in enumerate(dataloader):
load_data_to_gpu(batch_dict)
if getattr(args, 'infer_time', False):
start_time = time.time()
with torch.no_grad():
pred_dicts, ret_dict = model(batch_dict)
disp_dict = {}
if getattr(args, 'infer_time', False):
inference_time = time.time() - start_time
infer_time_meter.update(inference_time * 1000)
# use ms to measure inference time
disp_dict['infer_time'] = f'{infer_time_meter.val:.2f}({infer_time_meter.avg:.2f})'
statistics_info(cfg, ret_dict, metric, disp_dict)
annos = dataset.generate_prediction_dicts(
batch_dict, pred_dicts, class_names,
output_path=final_output_dir if args.save_to_file else None
)
det_annos += annos
if cfg.LOCAL_RANK == 0:
progress_bar.set_postfix(disp_dict)
progress_bar.update()
if cfg.LOCAL_RANK == 0:
progress_bar.close()
if dist_test:
rank, world_size = common_utils.get_dist_info()
det_annos = common_utils.merge_results_dist(det_annos, len(dataset), tmpdir=result_dir / 'tmpdir')
metric = common_utils.merge_results_dist([metric], world_size, tmpdir=result_dir / 'tmpdir')
logger.info('*************** Performance of EPOCH %s *****************' % epoch_id)
sec_per_example = (time.time() - start_time) / len(dataloader.dataset)
logger.info('Generate label finished(sec_per_example: %.4f second).' % sec_per_example)
if cfg.LOCAL_RANK != 0:
return {}
ret_dict = {}
if dist_test:
for key, val in metric[0].items():
for k in range(1, world_size):
metric[0][key] += metric[k][key]
metric = metric[0]
gt_num_cnt = metric['gt_num']
for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
cur_roi_recall = metric['recall_roi_%s' % str(cur_thresh)] / max(gt_num_cnt, 1)
cur_rcnn_recall = metric['recall_rcnn_%s' % str(cur_thresh)] / max(gt_num_cnt, 1)
logger.info('recall_roi_%s: %f' % (cur_thresh, cur_roi_recall))
logger.info('recall_rcnn_%s: %f' % (cur_thresh, cur_rcnn_recall))
ret_dict['recall/roi_%s' % str(cur_thresh)] = cur_roi_recall
ret_dict['recall/rcnn_%s' % str(cur_thresh)] = cur_rcnn_recall
total_pred_objects = 0
for anno in det_annos:
total_pred_objects += anno['name'].__len__()
logger.info('Average predicted number of objects(%d samples): %.3f'
% (len(det_annos), total_pred_objects / max(1, len(det_annos))))
with open(result_dir / 'result.pkl', 'wb') as f:
pickle.dump(det_annos, f)
print(f"length of det_annos: {len(det_annos)}")
print(dataset)
result_str, result_dict = dataset.evaluation(
det_annos, class_names,
eval_metric=cfg.MODEL.POST_PROCESSING.EVAL_METRIC,
output_path=final_output_dir
)
print(f"result_dict: {result_dict.keys()}")
logger.info(result_str)
ret_dict.update(result_dict)
logger.info('Result is saved to %s' % result_dir)
logger.info('****************Evaluation done.*****************')
return ret_dict
if __name__ == '__main__':
pass