yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import pickle
import os
import copy
import numpy as np
from skimage import io
import torch
import SharedArray
import torch.distributed as dist
from ...ops.iou3d_nms import iou3d_nms_utils
from ...utils import box_utils, common_utils
class DataBaseSampler(object):
def __init__(self, root_path, sampler_cfg, class_names, logger=None):
self.root_path = root_path
self.class_names = class_names
self.sampler_cfg = sampler_cfg
self.img_aug_type = sampler_cfg.get('IMG_AUG_TYPE', None)
self.img_aug_iou_thresh = sampler_cfg.get('IMG_AUG_IOU_THRESH', 0.5)
self.logger = logger
self.db_infos = {}
for class_name in class_names:
self.db_infos[class_name] = []
self.use_shared_memory = sampler_cfg.get('USE_SHARED_MEMORY', False)
for db_info_path in sampler_cfg.DB_INFO_PATH:
db_info_path = self.root_path.resolve() / db_info_path
if not db_info_path.exists():
assert len(sampler_cfg.DB_INFO_PATH) == 1
sampler_cfg.DB_INFO_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_INFO_PATH']
sampler_cfg.DB_DATA_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_DATA_PATH']
db_info_path = self.root_path.resolve() / sampler_cfg.DB_INFO_PATH[0]
sampler_cfg.NUM_POINT_FEATURES = sampler_cfg.BACKUP_DB_INFO['NUM_POINT_FEATURES']
with open(str(db_info_path), 'rb') as f:
infos = pickle.load(f)
[self.db_infos[cur_class].extend(infos[cur_class]) for cur_class in class_names]
for func_name, val in sampler_cfg.PREPARE.items():
self.db_infos = getattr(self, func_name)(self.db_infos, val)
self.gt_database_data_key = self.load_db_to_shared_memory() if self.use_shared_memory else None
self.sample_groups = {}
self.sample_class_num = {}
self.limit_whole_scene = sampler_cfg.get('LIMIT_WHOLE_SCENE', False)
for x in sampler_cfg.SAMPLE_GROUPS:
class_name, sample_num = x.split(':')
if class_name not in class_names:
continue
self.sample_class_num[class_name] = sample_num
self.sample_groups[class_name] = {
'sample_num': sample_num,
'pointer': len(self.db_infos[class_name]),
'indices': np.arange(len(self.db_infos[class_name]))
}
def __getstate__(self):
d = dict(self.__dict__)
del d['logger']
return d
def __setstate__(self, d):
self.__dict__.update(d)
def __del__(self):
if self.use_shared_memory:
self.logger.info('Deleting GT database from shared memory')
cur_rank, num_gpus = common_utils.get_dist_info()
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and os.path.exists(f"/dev/shm/{sa_key}"):
SharedArray.delete(f"shm://{sa_key}")
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been removed from shared memory')
def load_db_to_shared_memory(self):
self.logger.info('Loading GT database to shared memory')
cur_rank, world_size, num_gpus = common_utils.get_dist_info(return_gpu_per_machine=True)
assert self.sampler_cfg.DB_DATA_PATH.__len__() == 1, 'Current only support single DB_DATA'
db_data_path = self.root_path.resolve() / self.sampler_cfg.DB_DATA_PATH[0]
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and not os.path.exists(f"/dev/shm/{sa_key}"):
gt_database_data = np.load(db_data_path)
common_utils.sa_create(f"shm://{sa_key}", gt_database_data)
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been saved to shared memory')
return sa_key
def filter_by_difficulty(self, db_infos, removed_difficulty):
new_db_infos = {}
for key, dinfos in db_infos.items():
pre_len = len(dinfos)
new_db_infos[key] = [
info for info in dinfos
if info['difficulty'] not in removed_difficulty
]
if self.logger is not None:
self.logger.info('Database filter by difficulty %s: %d => %d' % (key, pre_len, len(new_db_infos[key])))
return new_db_infos
def filter_by_min_points(self, db_infos, min_gt_points_list):
for name_num in min_gt_points_list:
name, min_num = name_num.split(':')
min_num = int(min_num)
if min_num > 0 and name in db_infos.keys():
filtered_infos = []
for info in db_infos[name]:
if info['num_points_in_gt'] >= min_num:
filtered_infos.append(info)
if self.logger is not None:
self.logger.info('Database filter by min points %s: %d => %d' %
(name, len(db_infos[name]), len(filtered_infos)))
db_infos[name] = filtered_infos
return db_infos
def sample_with_fixed_number(self, class_name, sample_group):
"""
Args:
class_name:
sample_group:
Returns:
"""
sample_num, pointer, indices = int(sample_group['sample_num']), sample_group['pointer'], sample_group['indices']
if pointer >= len(self.db_infos[class_name]):
indices = np.random.permutation(len(self.db_infos[class_name]))
pointer = 0
sampled_dict = [self.db_infos[class_name][idx] for idx in indices[pointer: pointer + sample_num]]
pointer += sample_num
sample_group['pointer'] = pointer
sample_group['indices'] = indices
return sampled_dict
@staticmethod
def put_boxes_on_road_planes(gt_boxes, road_planes, calib):
"""
Only validate in KITTIDataset
Args:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
road_planes: [a, b, c, d]
calib:
Returns:
"""
a, b, c, d = road_planes
center_cam = calib.lidar_to_rect(gt_boxes[:, 0:3])
cur_height_cam = (-d - a * center_cam[:, 0] - c * center_cam[:, 2]) / b
center_cam[:, 1] = cur_height_cam
cur_lidar_height = calib.rect_to_lidar(center_cam)[:, 2]
mv_height = gt_boxes[:, 2] - gt_boxes[:, 5] / 2 - cur_lidar_height
gt_boxes[:, 2] -= mv_height # lidar view
return gt_boxes, mv_height
def copy_paste_to_image_kitti(self, data_dict, crop_feat, gt_number, point_idxes=None):
kitti_img_aug_type = 'by_depth'
kitti_img_aug_use_type = 'annotation'
image = data_dict['images']
boxes3d = data_dict['gt_boxes']
boxes2d = data_dict['gt_boxes2d']
corners_lidar = box_utils.boxes_to_corners_3d(boxes3d)
if 'depth' in kitti_img_aug_type:
paste_order = boxes3d[:,0].argsort()
paste_order = paste_order[::-1]
else:
paste_order = np.arange(len(boxes3d),dtype=np.int)
if 'reverse' in kitti_img_aug_type:
paste_order = paste_order[::-1]
paste_mask = -255 * np.ones(image.shape[:2], dtype=np.int)
fg_mask = np.zeros(image.shape[:2], dtype=np.int)
overlap_mask = np.zeros(image.shape[:2], dtype=np.int)
depth_mask = np.zeros((*image.shape[:2], 2), dtype=np.float)
points_2d, depth_2d = data_dict['calib'].lidar_to_img(data_dict['points'][:,:3])
points_2d[:,0] = np.clip(points_2d[:,0], a_min=0, a_max=image.shape[1]-1)
points_2d[:,1] = np.clip(points_2d[:,1], a_min=0, a_max=image.shape[0]-1)
points_2d = points_2d.astype(np.int)
for _order in paste_order:
_box2d = boxes2d[_order]
image[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = crop_feat[_order]
overlap_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] += \
(paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] > 0).astype(np.int)
paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = _order
if 'cover' in kitti_img_aug_use_type:
# HxWx2 for min and max depth of each box region
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],0] = corners_lidar[_order,:,0].min()
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],1] = corners_lidar[_order,:,0].max()
# foreground area of original point cloud in image plane
if _order < gt_number:
fg_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = 1
data_dict['images'] = image
# if not self.joint_sample:
# return data_dict
new_mask = paste_mask[points_2d[:,1], points_2d[:,0]]==(point_idxes+gt_number)
if False: # self.keep_raw:
raw_mask = (point_idxes == -1)
else:
raw_fg = (fg_mask == 1) & (paste_mask >= 0) & (paste_mask < gt_number)
raw_bg = (fg_mask == 0) & (paste_mask < 0)
raw_mask = raw_fg[points_2d[:,1], points_2d[:,0]] | raw_bg[points_2d[:,1], points_2d[:,0]]
keep_mask = new_mask | raw_mask
data_dict['points_2d'] = points_2d
if 'annotation' in kitti_img_aug_use_type:
data_dict['points'] = data_dict['points'][keep_mask]
data_dict['points_2d'] = data_dict['points_2d'][keep_mask]
elif 'projection' in kitti_img_aug_use_type:
overlap_mask[overlap_mask>=1] = 1
data_dict['overlap_mask'] = overlap_mask
if 'cover' in kitti_img_aug_use_type:
data_dict['depth_mask'] = depth_mask
return data_dict
def sample_gt_boxes_2d(self, data_dict, sampled_boxes, valid_mask):
mv_height = None
if self.img_aug_type == 'kitti':
sampled_boxes2d, mv_height, ret_valid_mask = self.sample_gt_boxes_2d_kitti(data_dict, sampled_boxes, valid_mask)
else:
raise NotImplementedError
return sampled_boxes2d, mv_height, ret_valid_mask
def initilize_image_aug_dict(self, data_dict, gt_boxes_mask):
img_aug_gt_dict = None
if self.img_aug_type is None:
pass
elif self.img_aug_type == 'kitti':
obj_index_list, crop_boxes2d = [], []
gt_number = gt_boxes_mask.sum().astype(np.int)
gt_boxes2d = data_dict['gt_boxes2d'][gt_boxes_mask].astype(np.int)
gt_crops2d = [data_dict['images'][_x[1]:_x[3],_x[0]:_x[2]] for _x in gt_boxes2d]
img_aug_gt_dict = {
'obj_index_list': obj_index_list,
'gt_crops2d': gt_crops2d,
'gt_boxes2d': gt_boxes2d,
'gt_number': gt_number,
'crop_boxes2d': crop_boxes2d
}
else:
raise NotImplementedError
return img_aug_gt_dict
def collect_image_crops(self, img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx):
if self.img_aug_type == 'kitti':
new_box, img_crop2d, obj_points, obj_idx = self.collect_image_crops_kitti(info, data_dict,
obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx)
img_aug_gt_dict['crop_boxes2d'].append(new_box)
img_aug_gt_dict['gt_crops2d'].append(img_crop2d)
img_aug_gt_dict['obj_index_list'].append(obj_idx)
else:
raise NotImplementedError
return img_aug_gt_dict, obj_points
def copy_paste_to_image(self, img_aug_gt_dict, data_dict, points):
if self.img_aug_type == 'kitti':
obj_points_idx = np.concatenate(img_aug_gt_dict['obj_index_list'], axis=0)
point_idxes = -1 * np.ones(len(points), dtype=np.int)
point_idxes[:obj_points_idx.shape[0]] = obj_points_idx
data_dict['gt_boxes2d'] = np.concatenate([img_aug_gt_dict['gt_boxes2d'], np.array(img_aug_gt_dict['crop_boxes2d'])], axis=0)
data_dict = self.copy_paste_to_image_kitti(data_dict, img_aug_gt_dict['gt_crops2d'], img_aug_gt_dict['gt_number'], point_idxes)
if 'road_plane' in data_dict:
data_dict.pop('road_plane')
else:
raise NotImplementedError
return data_dict
def add_sampled_boxes_to_scene(self, data_dict, sampled_gt_boxes, total_valid_sampled_dict, mv_height=None, sampled_gt_boxes2d=None):
gt_boxes_mask = data_dict['gt_boxes_mask']
gt_boxes = data_dict['gt_boxes'][gt_boxes_mask]
gt_names = data_dict['gt_names'][gt_boxes_mask]
points = data_dict['points']
if self.sampler_cfg.get('USE_ROAD_PLANE', False) and mv_height is None:
sampled_gt_boxes, mv_height = self.put_boxes_on_road_planes(
sampled_gt_boxes, data_dict['road_plane'], data_dict['calib']
)
data_dict.pop('calib')
data_dict.pop('road_plane')
obj_points_list = []
# convert sampled 3D boxes to image plane
img_aug_gt_dict = self.initilize_image_aug_dict(data_dict, gt_boxes_mask)
if self.use_shared_memory:
gt_database_data = SharedArray.attach(f"shm://{self.gt_database_data_key}")
gt_database_data.setflags(write=0)
else:
gt_database_data = None
for idx, info in enumerate(total_valid_sampled_dict):
if self.use_shared_memory:
start_offset, end_offset = info['global_data_offset']
obj_points = copy.deepcopy(gt_database_data[start_offset:end_offset])
else:
file_path = self.root_path / info['path']
obj_points = np.fromfile(str(file_path), dtype=np.float32).reshape(
[-1, self.sampler_cfg.NUM_POINT_FEATURES])
if obj_points.shape[0] != info['num_points_in_gt']:
obj_points = np.fromfile(str(file_path), dtype=np.float64).reshape(-1, self.sampler_cfg.NUM_POINT_FEATURES)
assert obj_points.shape[0] == info['num_points_in_gt']
obj_points[:, :3] += info['box3d_lidar'][:3].astype(np.float32)
if self.sampler_cfg.get('USE_ROAD_PLANE', False):
# mv height
obj_points[:, 2] -= mv_height[idx]
if self.img_aug_type is not None:
img_aug_gt_dict, obj_points = self.collect_image_crops(
img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx
)
obj_points_list.append(obj_points)
obj_points = np.concatenate(obj_points_list, axis=0)
sampled_gt_names = np.array([x['name'] for x in total_valid_sampled_dict])
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False) or obj_points.shape[-1] != points.shape[-1]:
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False):
min_time = min(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
max_time = max(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
else:
assert obj_points.shape[-1] == points.shape[-1] + 1
# transform multi-frame GT points to single-frame GT points
min_time = max_time = 0.0
time_mask = np.logical_and(obj_points[:, -1] < max_time + 1e-6, obj_points[:, -1] > min_time - 1e-6)
obj_points = obj_points[time_mask]
large_sampled_gt_boxes = box_utils.enlarge_box3d(
sampled_gt_boxes[:, 0:7], extra_width=self.sampler_cfg.REMOVE_EXTRA_WIDTH
)
points = box_utils.remove_points_in_boxes3d(points, large_sampled_gt_boxes)
points = np.concatenate([obj_points[:, :points.shape[-1]], points], axis=0)
gt_names = np.concatenate([gt_names, sampled_gt_names], axis=0)
gt_boxes = np.concatenate([gt_boxes, sampled_gt_boxes], axis=0)
data_dict['gt_boxes'] = gt_boxes
data_dict['gt_names'] = gt_names
data_dict['points'] = points
if self.img_aug_type is not None:
data_dict = self.copy_paste_to_image(img_aug_gt_dict, data_dict, points)
return data_dict
def __call__(self, data_dict):
"""
Args:
data_dict:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
gt_boxes = data_dict['gt_boxes']
gt_names = data_dict['gt_names'].astype(str)
existed_boxes = gt_boxes
total_valid_sampled_dict = []
sampled_mv_height = []
sampled_gt_boxes2d = []
for class_name, sample_group in self.sample_groups.items():
if self.limit_whole_scene:
num_gt = np.sum(class_name == gt_names)
sample_group['sample_num'] = str(int(self.sample_class_num[class_name]) - num_gt)
if int(sample_group['sample_num']) > 0:
sampled_dict = self.sample_with_fixed_number(class_name, sample_group)
sampled_boxes = np.stack([x['box3d_lidar'] for x in sampled_dict], axis=0).astype(np.float32)
assert not self.sampler_cfg.get('DATABASE_WITH_FAKELIDAR', False), 'Please use latest codes to generate GT_DATABASE'
iou1 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], existed_boxes[:, 0:7])
iou2 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], sampled_boxes[:, 0:7])
iou2[range(sampled_boxes.shape[0]), range(sampled_boxes.shape[0])] = 0
iou1 = iou1 if iou1.shape[1] > 0 else iou2
valid_mask = ((iou1.max(axis=1) + iou2.max(axis=1)) == 0)
if self.img_aug_type is not None:
sampled_boxes2d, mv_height, valid_mask = self.sample_gt_boxes_2d(data_dict, sampled_boxes, valid_mask)
sampled_gt_boxes2d.append(sampled_boxes2d)
if mv_height is not None:
sampled_mv_height.append(mv_height)
valid_mask = valid_mask.nonzero()[0]
valid_sampled_dict = [sampled_dict[x] for x in valid_mask]
valid_sampled_boxes = sampled_boxes[valid_mask]
existed_boxes = np.concatenate((existed_boxes, valid_sampled_boxes[:, :existed_boxes.shape[-1]]), axis=0)
total_valid_sampled_dict.extend(valid_sampled_dict)
sampled_gt_boxes = existed_boxes[gt_boxes.shape[0]:, :]
if total_valid_sampled_dict.__len__() > 0:
sampled_gt_boxes2d = np.concatenate(sampled_gt_boxes2d, axis=0) if len(sampled_gt_boxes2d) > 0 else None
sampled_mv_height = np.concatenate(sampled_mv_height, axis=0) if len(sampled_mv_height) > 0 else None
data_dict = self.add_sampled_boxes_to_scene(
data_dict, sampled_gt_boxes, total_valid_sampled_dict, sampled_mv_height, sampled_gt_boxes2d
)
data_dict.pop('gt_boxes_mask')
return data_dict