yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import os
from tqdm import tqdm
import pickle
import argparse
import pathlib
import json
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import numpy as np
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from metrics import ConfusionMatrix
import data_transforms
import argparse
import random
import traceback
"""
Model
"""
class STN3d(nn.Module):
def __init__(self, in_channels):
super(STN3d, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv1d(in_channels, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True)
)
self.linear_layers = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, 9)
)
self.iden = torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32)).reshape(1, 9)
def forward(self, x):
batchsize = x.size()[0]
x = self.conv_layers(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = self.linear_layers(x)
iden = self.iden.repeat(batchsize, 1).to(x.device)
x = x + iden
x = x.view(-1, 3, 3)
return x
class STNkd(nn.Module):
def __init__(self, k=64):
super(STNkd, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv1d(k, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True)
)
self.linear_layers = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, k * k)
)
self.k = k
self.iden = torch.from_numpy(np.eye(self.k).flatten().astype(np.float32)).reshape(1, self.k * self.k)
def forward(self, x):
batchsize = x.size()[0]
x = self.conv_layers(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = self.linear_layers(x)
iden = self.iden.repeat(batchsize, 1).to(x.device)
x = x + iden
x = x.view(-1, self.k, self.k)
return x
class PointNetEncoder(nn.Module):
def __init__(self, global_feat=True, feature_transform=False, in_channels=3):
super(PointNetEncoder, self).__init__()
self.stn = STN3d(in_channels)
self.conv_layer1 = nn.Sequential(
nn.Conv1d(in_channels, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True)
)
self.conv_layer2 = nn.Sequential(
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True)
)
self.conv_layer3 = nn.Sequential(
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True)
)
self.conv_layer4 = nn.Sequential(
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024)
)
self.global_feat = global_feat
self.feature_transform = feature_transform
if self.feature_transform:
self.fstn = STNkd(k=64)
def forward(self, x):
B, D, N = x.size()
trans = self.stn(x)
x = x.transpose(2, 1)
if D > 3:
feature = x[:, :, 3:]
x = x[:, :, :3]
x = torch.bmm(x, trans)
if D > 3:
x = torch.cat([x, feature], dim=2)
x = x.transpose(2, 1)
x = self.conv_layer1(x)
if self.feature_transform:
trans_feat = self.fstn(x)
x = x.transpose(2, 1)
x = torch.bmm(x, trans_feat)
x = x.transpose(2, 1)
else:
trans_feat = None
pointfeat = x
x = self.conv_layer2(x)
x = self.conv_layer3(x)
x = self.conv_layer4(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
# Construct graph and compute context-aware features
graph = construct_graph(x, args.k)
context_features = compute_context_aware_features(x, graph)
x = x + context_features
if self.global_feat:
return x, trans, trans_feat
else:
x = x.view(-1, 1024, 1).repeat(1, 1, N)
return torch.cat([x, pointfeat], 1), trans, trans_feat
def construct_graph(points, k):
"""
Construct a dynamic graph where nodes represent points and edges capture semantic similarities.
"""
# Compute pairwise distances
dist = torch.cdist(points, points)
# Get the top k neighbors
_, indices = torch.topk(dist, k, largest=False, dim=1)
return indices
def compute_context_aware_features(points, graph, normalization_method='mean'):
"""
Compute context-aware feature adjustments using the constructed graph.
"""
# Initialize context-aware features
context_features = torch.zeros_like(points)
for i in range(points.size(0)):
neighbors = graph[i]
if normalization_method == 'mean':
context_features[i] = points[neighbors].mean(dim=0)
elif normalization_method == 'max':
context_features[i] = points[neighbors].max(dim=0)[0]
elif normalization_method == 'min':
context_features[i] = points[neighbors].min(dim=0)[0]
elif normalization_method == 'std':
context_features[i] = points[neighbors].std(dim=0)
else:
raise ValueError("Unknown normalization method: {}".format(normalization_method))
return context_features
def feature_transform_reguliarzer(trans):
d = trans.size()[1]
I = torch.eye(d)[None, :, :]
if trans.is_cuda:
I = I.cuda()
loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1)) - I, dim=(1, 2)))
return loss
class Model(nn.Module):
def __init__(self, in_channels=3, num_classes=40, scale=0.001):
super().__init__()
self.mat_diff_loss_scale = scale
self.backbone = PointNetEncoder(global_feat=True, feature_transform=True, in_channels=in_channels)
self.cls_head = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.Dropout(p=0.4),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes)
)
def forward(self, x, gts):
x, trans, trans_feat = self.backbone(x)
x = self.cls_head(x)
x = F.log_softmax(x, dim=1)
loss = F.nll_loss(x, gts)
mat_diff_loss = feature_transform_reguliarzer(trans_feat)
total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
return total_loss, x
"""
dataset and normalization
"""
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
class ModelNetDataset(Dataset):
def __init__(self, data_root, num_category, num_points, split='train'):
self.root = data_root
self.npoints = num_points
self.uniform = True
self.use_normals = True
self.num_category = num_category
if self.num_category == 10:
self.catfile = os.path.join(self.root, 'modelnet10_shape_names.txt')
else:
self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt')
self.cat = [line.rstrip() for line in open(self.catfile)]
self.classes = dict(zip(self.cat, range(len(self.cat))))
shape_ids = {}
if self.num_category == 10:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_train.txt'))]
shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_test.txt'))]
else:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))]
shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))]
assert (split == 'train' or split == 'test')
shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i
in range(len(shape_ids[split]))]
print('The size of %s data is %d' % (split, len(self.datapath)))
if self.uniform:
self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts_fps.dat' % (self.num_category, split, self.npoints))
else:
self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts.dat' % (self.num_category, split, self.npoints))
print('Load processed data from %s...' % self.data_path)
with open(self.data_path, 'rb') as f:
self.list_of_points, self.list_of_labels = pickle.load(f)
def __len__(self):
return len(self.datapath)
def __getitem__(self, index):
point_set, label = self.list_of_points[index], self.list_of_labels[index]
point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])
if not self.use_normals:
point_set = point_set[:, 0:3]
return point_set, label[0]
def seed_everything(seed=11):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main(args):
seed_everything(args.seed)
final_infos = {}
all_results = {}
pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
datasets, dataloaders = {}, {}
for split in ['train', 'test']:
datasets[split] = ModelNetDataset(args.data_root, args.num_category, args.num_points, split)
dataloaders[split] = DataLoader(datasets[split], batch_size=args.batch_size, shuffle=(split == 'train'),
drop_last=(split == 'train'), num_workers=8)
model = Model(in_channels=args.in_channels).cuda()
optimizer = torch.optim.Adam(
model.parameters(), lr=args.learning_rate,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-4
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=20, gamma=0.7
)
train_losses = []
print("Training model...")
model.train()
global_step = 0
cur_epoch = 0
best_oa = 0
best_acc = 0
start_time = time.time()
for epoch in tqdm(range(args.max_epoch), desc='training'):
model.train()
cm = ConfusionMatrix(num_classes=len(datasets['train'].classes))
for points, target in tqdm(dataloaders['train'], desc=f'epoch {cur_epoch}/{args.max_epoch}'):
# data transforms
points = points.data.numpy()
points = data_transforms.random_point_dropout(points)
points[:, :, 0:3] = data_transforms.random_scale_point_cloud(points[:, :, 0:3])
points[:, :, 0:3] = data_transforms.shift_point_cloud(points[:, :, 0:3])
points = torch.from_numpy(points).transpose(2, 1).contiguous()
points, target = points.cuda(), target.long().cuda()
loss, logits = model(points, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1, norm_type=2)
optimizer.step()
model.zero_grad()
logs = {"loss": loss.detach().item()}
train_losses.append(loss.detach().item())
cm.update(logits.argmax(dim=1), target)
scheduler.step()
end_time = time.time()
training_time = end_time - start_time
macc, overallacc, accs = cm.all_acc()
print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
train_macc: {macc}, train_oa: {overallacc}")
if (cur_epoch % args.val_per_epoch == 0 and cur_epoch != 0) or cur_epoch == (args.max_epoch - 1):
model.eval()
cm = ConfusionMatrix(num_classes=datasets['test'].num_category)
pbar = tqdm(enumerate(dataloaders['test']), total=dataloaders['test'].__len__())
# with torch.no_grad():
for idx, (points, target) in pbar:
points, target = points.cuda(), target.long().cuda()
points = points.transpose(2, 1).contiguous()
loss, logits = model(points, target)
cm.update(logits.argmax(dim=1), target)
tp, count = cm.tp, cm.count
macc, overallacc, accs = cm.cal_acc(tp, count)
print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
val_macc: {macc}, val_oa: {overallacc}")
if overallacc > best_oa:
best_oa = overallacc
best_acc = macc
best_epoch = cur_epoch
torch.save(model.state_dict(), os.path.join(args.out_dir, 'best.pth'))
cur_epoch += 1
print(f"finish epoch {cur_epoch} training")
final_infos = {
"modelnet" + str(args.num_category):{
"means":{
"best_oa": best_oa,
"best_acc": best_acc,
"epoch": best_epoch
}
}
}
with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--out_dir", type=str, default="run_0")
parser.add_argument("--in_channels", type=int, default=6)
parser.add_argument("--num_points", type=int, default=1024)
parser.add_argument("--num_category", type=int, choices=[10, 40], default=40)
parser.add_argument("--data_root", type=str, default='./datasets/modelnet40')
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--max_epoch", type=int, default=200)
parser.add_argument("--val_per_epoch", type=int, default=5)
parser.add_argument("--k", type=int, default=5, help="Number of neighbors for graph construction")
parser.add_argument("--seed", type=int, default=666)
args = parser.parse_args()
try:
main(args)
except Exception as e:
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise