|
from opencompass.multimodal.models.minigpt_4 import (MiniGPT4MMEPostProcessor, MiniGPT4MMEPromptConstructor) |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.LoadImageFromFile'), |
|
dict(type='mmpretrain.ToPIL', to_rgb=True), |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict(type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711)), |
|
dict(type='mmpretrain.PackInputs', |
|
algorithm_keys=[ |
|
'question', 'answer', 'task' |
|
]) |
|
] |
|
|
|
dataset = dict(type='opencompass.MMEDataset', |
|
data_dir='/path/to/MME', |
|
pipeline=val_pipeline) |
|
|
|
minigpt_4_mme_dataloader = dict(batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', shuffle=False)) |
|
|
|
|
|
minigpt_4_model = dict( |
|
type='minigpt-4', |
|
low_resource=False, |
|
llama_model='/path/to/vicuna/', |
|
prompt_constructor=dict(type=MiniGPT4MMEPromptConstructor), |
|
post_processor=dict(type=MiniGPT4MMEPostProcessor)) |
|
|
|
|
|
minigpt_4_mme_evaluator = [ |
|
dict(type='opencompass.MMEMetric') |
|
] |
|
|
|
minigpt_4_load_from = '/path/to/prerained_minigpt4_7b.pth' |
|
|