from opencompass.multimodal.models.minigpt_4 import (MiniGPT4MMEPostProcessor, MiniGPT4MMEPromptConstructor) # dataloader settings val_pipeline = [ dict(type='mmpretrain.LoadImageFromFile'), dict(type='mmpretrain.ToPIL', to_rgb=True), dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'answer', 'task' ]) ] dataset = dict(type='opencompass.MMEDataset', data_dir='/path/to/MME', pipeline=val_pipeline) minigpt_4_mme_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings minigpt_4_model = dict( type='minigpt-4', low_resource=False, llama_model='/path/to/vicuna/', prompt_constructor=dict(type=MiniGPT4MMEPromptConstructor), post_processor=dict(type=MiniGPT4MMEPostProcessor)) # evaluation settings minigpt_4_mme_evaluator = [ dict(type='opencompass.MMEMetric') ] minigpt_4_load_from = '/path/to/prerained_minigpt4_7b.pth' # noqa