metadata
license: cc-by-sa-4.0
library_name: transformers
pipeline_tag: text-classification
xlm-roberta-base for register labeling, specifically fine-tuned for question-answer document identification
This is the xlm-roberta-base
, fine-tuned on register annotated data in English (https://github.com/TurkuNLP/CORE-corpus) and Finnish (https://github.com/TurkuNLP/FinCORE_full) as well as unpublished versions of Swedish and French (https://github.com/TurkuNLP/multilingual-register-labeling). The model is trained to predict whether a text includes something related to questions and answers or not.
Hyperparameters
batch_size = 8
epochs = 10 (trained for less)
base_LM_model = "xlm-roberta-base"
max_seq_len = 512
learning_rate = 4e-6
Performance
F1-micro = 0.98
F1-macro = 0.79
F1 QA label = 0.60
F1 not QA label = 0.99
Precision QA label = 0.82
Precision not QA label = 0.99
Recall QA label = 0.47
Recall not QA label = 1.00