|
--- |
|
language: |
|
- fi |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
widget: |
|
- text: "Minusta täällä on ihana asua!" |
|
--- |
|
|
|
|
|
# Uncased Finnish Sentence BERT model |
|
|
|
Finnish Sentence BERT trained from FinBERT. A demo on retrieving the most similar sentences from a dataset of 400 million sentences *using [the cased model](https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase)* can be found [here](http://epsilon-it.utu.fi/sbert400m). |
|
|
|
## Training |
|
|
|
- Library: [sentence-transformers](https://www.sbert.net/) |
|
- FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 |
|
- Data: The data provided [here](https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) |
|
- Pooling: mean pooling |
|
- Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels](https://aclanthology.org/2021.nodalida-main.29/) |
|
|
|
## Usage |
|
|
|
The same as in [HuggingFace documentation](https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` |
|
|
|
### SentenceTransformer |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] |
|
|
|
model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
### HuggingFace Transformers |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
A publication detailing the evaluation results is currently being drafted. |
|
|
|
## Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
While the publication is being drafted, please cite [this page](https://turkunlp.org/paraphrase.html). |
|
|
|
## References |
|
|
|
- J. Kanerva, F. Ginter, LH. Chang, I. Rastas, V. Skantsi, J. Kilpeläinen, HM. Kupari, J. Saarni, M. Sevón, and O. Tarkka. Finnish Paraphrase Corpus. In *NoDaLiDa 2021*, 2021. |
|
- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *EMNLP-IJCNLP*, pages 3982–3992, 2019. |
|
- A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. Multilingual is not enough: BERT for Finnish. *arXiv preprint arXiv:1912.07076*, 2019. |
|
|