TungCan's picture
Training complete with train/val/test split
f698b60 verified
metadata
library_name: transformers
base_model: 5CD-AI/Vietnamese-Sentiment-visobert
tags:
  - text-classification
  - vietnamese
  - sentiment-analysis
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: tuning-sentiment-abp-v2.2
    results: []

tuning-sentiment-abp-v2.2

This model is a fine-tuned version of 5CD-AI/Vietnamese-Sentiment-visobert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9679
  • Accuracy: 0.4844
  • F1: 0.5232
  • Precision: 0.5186
  • Recall: 0.5436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6162 1.0 607 0.7060 0.6096 0.5219 0.5977 0.5816
0.6188 2.0 1214 0.7061 0.6074 0.5241 0.5668 0.5931
0.6158 3.0 1821 0.7626 0.5935 0.5223 0.5325 0.5822
0.6077 4.0 2428 0.8325 0.5916 0.5283 0.5217 0.5974
0.5846 5.0 3035 0.9679 0.4844 0.5232 0.5186 0.5436

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1