Mermaid: Graph TB,TD,LR,RL, sequenceDiagram. RAG: Context-Obedient Answering for reduced hallucinations
db5b718
verified
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Phi-3 model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json", | |
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json", | |
} | |
class Phi3Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3 | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the | |
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32064): | |
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Phi3Model`]. | |
hidden_size (`int`, *optional*, defaults to 3072): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 8192): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer decoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
resid_pdrop (`float`, *optional*, defaults to 0.0): | |
Dropout probability for mlp outputs. | |
embd_pdrop (`int`, *optional*, defaults to 0.0): | |
The dropout ratio for the embeddings. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio after computing the attention scores. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 4096): | |
The maximum sequence length that this model might ever be used with. | |
original_max_position_embeddings (`int`, *optional*, defaults to 4096): | |
The maximum sequence length that this model was trained with. This is used to determine the size of the | |
original RoPE embeddings when using long scaling. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-05): | |
The epsilon value used for the RMSNorm. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`dict`, *optional*): | |
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must | |
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and | |
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size | |
divided by the number of attention heads divided by 2. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 32000): | |
The id of the "end-of-sequence" token. | |
pad_token_id (`int`, *optional*, defaults to 32000): | |
The id of the padding token. | |
sliding_window (`int`, *optional*): | |
Sliding window attention window size. If `None`, no sliding window is applied. | |
Example: | |
```python | |
>>> from transformers import Phi3Model, Phi3Config | |
>>> # Initializing a Phi-3 style configuration | |
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct") | |
>>> # Initializing a model from the configuration | |
>>> model = Phi3Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "phi3" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32064, | |
hidden_size=3072, | |
intermediate_size=8192, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attention_dropout=0.0, | |
hidden_act="silu", | |
max_position_embeddings=4096, | |
original_max_position_embeddings=4096, | |
initializer_range=0.02, | |
rms_norm_eps=1e-5, | |
use_cache=True, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
bos_token_id=1, | |
eos_token_id=32000, | |
pad_token_id=32000, | |
sliding_window=None, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attention_dropout = attention_dropout | |
self.hidden_act = hidden_act | |
self.max_position_embeddings = max_position_embeddings | |
self.original_max_position_embeddings = original_max_position_embeddings | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self._rope_scaling_validation() | |
self.sliding_window = sliding_window | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
pad_token_id=pad_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3: | |
raise ValueError( | |
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, " | |
f"got {self.rope_scaling}" | |
) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) | |
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]: | |
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}") | |
if not ( | |
isinstance(rope_scaling_short_factor, list) | |
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) | |
): | |
raise ValueError( | |
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" | |
) | |
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2: | |
raise ValueError( | |
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}" | |
) | |
if not ( | |
isinstance(rope_scaling_long_factor, list) | |
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) | |
): | |
raise ValueError( | |
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" | |
) | |
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2: | |
raise ValueError( | |
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}" | |
) | |