metadata
library_name: transformers
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-bdd100k
results: []
git-base-bdd100k
This model is a fine-tuned version of microsoft/git-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4161
- Wer Score: 2.3730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 50
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Score |
---|---|---|---|---|
10.5754 | 1.0 | 3 | 9.3460 | 6.9161 |
9.2089 | 2.0 | 6 | 8.8317 | 7.6376 |
8.694 | 3.0 | 9 | 8.2760 | 6.6661 |
8.1805 | 4.0 | 12 | 7.8390 | 6.1320 |
7.7782 | 5.0 | 15 | 7.4904 | 8.3372 |
7.4422 | 6.0 | 18 | 7.1838 | 8.7640 |
7.1465 | 7.0 | 21 | 6.9029 | 8.6650 |
6.8738 | 8.0 | 24 | 6.6334 | 8.4883 |
6.6096 | 9.0 | 27 | 6.3706 | 8.4497 |
6.3498 | 10.0 | 30 | 6.1129 | 6.2287 |
6.0934 | 11.0 | 33 | 5.8568 | 3.5906 |
5.8399 | 12.0 | 36 | 5.6030 | 2.8328 |
5.5876 | 13.0 | 39 | 5.3507 | 2.8227 |
5.3365 | 14.0 | 42 | 5.1022 | 2.7740 |
5.0873 | 15.0 | 45 | 4.8551 | 2.7008 |
4.8379 | 16.0 | 48 | 4.6113 | 2.5162 |
4.592 | 17.0 | 51 | 4.3680 | 2.5235 |
4.3471 | 18.0 | 54 | 4.1294 | 2.6834 |
4.1038 | 19.0 | 57 | 3.8936 | 2.6583 |
3.8678 | 20.0 | 60 | 3.6622 | 2.6454 |
3.6309 | 21.0 | 63 | 3.4319 | 2.5201 |
3.3979 | 22.0 | 66 | 3.2060 | 2.6728 |
3.1669 | 23.0 | 69 | 2.9855 | 2.6611 |
2.9417 | 24.0 | 72 | 2.7673 | 2.6023 |
2.7208 | 25.0 | 75 | 2.5581 | 2.5034 |
2.5046 | 26.0 | 78 | 2.3538 | 2.6320 |
2.2961 | 27.0 | 81 | 2.1537 | 2.5414 |
2.0931 | 28.0 | 84 | 1.9672 | 2.5682 |
1.8979 | 29.0 | 87 | 1.7863 | 2.5207 |
1.7123 | 30.0 | 90 | 1.6167 | 2.5872 |
1.5355 | 31.0 | 93 | 1.4592 | 2.5900 |
1.371 | 32.0 | 96 | 1.3143 | 2.5649 |
1.2175 | 33.0 | 99 | 1.1803 | 2.6079 |
1.0761 | 34.0 | 102 | 1.0583 | 2.6555 |
0.9483 | 35.0 | 105 | 0.9517 | 2.6264 |
0.8327 | 36.0 | 108 | 0.8592 | 2.6751 |
0.7304 | 37.0 | 111 | 0.7763 | 2.6465 |
0.6411 | 38.0 | 114 | 0.7093 | 2.8428 |
0.5596 | 39.0 | 117 | 0.6482 | 2.6230 |
0.4931 | 40.0 | 120 | 0.5953 | 2.7919 |
0.4341 | 41.0 | 123 | 0.5551 | 2.9049 |
0.3849 | 42.0 | 126 | 0.5176 | 2.4620 |
0.3397 | 43.0 | 129 | 0.4873 | 2.9083 |
0.3027 | 44.0 | 132 | 0.4661 | 2.7567 |
0.267 | 45.0 | 135 | 0.4511 | 2.7058 |
0.2371 | 46.0 | 138 | 0.4321 | 2.8031 |
0.2105 | 47.0 | 141 | 0.4201 | 2.4413 |
0.1883 | 48.0 | 144 | 0.4155 | 2.8026 |
0.1693 | 49.0 | 147 | 0.4023 | 2.5039 |
0.1543 | 50.0 | 150 | 0.3999 | 2.6532 |
0.1372 | 51.0 | 153 | 0.3925 | 2.4983 |
0.1249 | 52.0 | 156 | 0.3915 | 2.4866 |
0.1161 | 53.0 | 159 | 0.3911 | 2.3602 |
0.1054 | 54.0 | 162 | 0.3923 | 2.3054 |
0.0937 | 55.0 | 165 | 0.3859 | 2.3758 |
0.0849 | 56.0 | 168 | 0.3896 | 2.3126 |
0.0772 | 57.0 | 171 | 0.3902 | 2.3708 |
0.0703 | 58.0 | 174 | 0.3858 | 2.2416 |
0.0636 | 59.0 | 177 | 0.3896 | 2.1974 |
0.0576 | 60.0 | 180 | 0.3856 | 2.2411 |
0.053 | 61.0 | 183 | 0.3913 | 2.3647 |
0.0485 | 62.0 | 186 | 0.3932 | 2.2634 |
0.0447 | 63.0 | 189 | 0.3928 | 2.3730 |
0.0398 | 64.0 | 192 | 0.3920 | 2.4418 |
0.0368 | 65.0 | 195 | 0.3940 | 2.3742 |
0.0337 | 66.0 | 198 | 0.3922 | 2.2942 |
0.032 | 67.0 | 201 | 0.3969 | 2.2634 |
0.0293 | 68.0 | 204 | 0.3965 | 2.3026 |
0.0276 | 69.0 | 207 | 0.3995 | 2.3859 |
0.0258 | 70.0 | 210 | 0.4017 | 2.2668 |
0.0245 | 71.0 | 213 | 0.4058 | 2.2332 |
0.024 | 72.0 | 216 | 0.4019 | 2.4049 |
0.0225 | 73.0 | 219 | 0.4058 | 2.4055 |
0.0215 | 74.0 | 222 | 0.4048 | 2.3322 |
0.0201 | 75.0 | 225 | 0.4058 | 2.3070 |
0.0197 | 76.0 | 228 | 0.4071 | 2.3702 |
0.0186 | 77.0 | 231 | 0.4061 | 2.3753 |
0.0181 | 78.0 | 234 | 0.4076 | 2.3893 |
0.0175 | 79.0 | 237 | 0.4091 | 2.3853 |
0.017 | 80.0 | 240 | 0.4103 | 2.3798 |
0.0167 | 81.0 | 243 | 0.4128 | 2.3647 |
0.016 | 82.0 | 246 | 0.4129 | 2.3496 |
0.0159 | 83.0 | 249 | 0.4116 | 2.3255 |
0.0152 | 84.0 | 252 | 0.4127 | 2.3490 |
0.0152 | 85.0 | 255 | 0.4129 | 2.3820 |
0.0148 | 86.0 | 258 | 0.4134 | 2.3725 |
0.0143 | 87.0 | 261 | 0.4140 | 2.3389 |
0.0141 | 88.0 | 264 | 0.4149 | 2.3255 |
0.0139 | 89.0 | 267 | 0.4151 | 2.3786 |
0.0137 | 90.0 | 270 | 0.4150 | 2.4116 |
0.0135 | 91.0 | 273 | 0.4153 | 2.4027 |
0.0132 | 92.0 | 276 | 0.4158 | 2.4016 |
0.0134 | 93.0 | 279 | 0.4158 | 2.3803 |
0.0131 | 94.0 | 282 | 0.4156 | 2.3758 |
0.0131 | 95.0 | 285 | 0.4155 | 2.3647 |
0.013 | 96.0 | 288 | 0.4154 | 2.3669 |
0.0128 | 97.0 | 291 | 0.4157 | 2.3602 |
0.0127 | 98.0 | 294 | 0.4160 | 2.3669 |
0.0127 | 99.0 | 297 | 0.4161 | 2.3730 |
0.0127 | 100.0 | 300 | 0.4161 | 2.3730 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.1.0+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1