metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gpt2_summarization_reward_model
results: []
gpt2_summarization_reward_model
This model is a fine-tuned version of gpt2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7376
- Accuracy: 0.6020
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6521 | 1.0 | 1451 | 0.6670 | 0.6037 |
0.6101 | 2.0 | 2902 | 0.6763 | 0.6022 |
0.5772 | 3.0 | 4353 | 0.7034 | 0.6026 |
0.5503 | 4.0 | 5804 | 0.7215 | 0.6024 |
0.5347 | 5.0 | 7255 | 0.7376 | 0.6020 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2