library_name: transformers
base_model: nbeerbower/phi3.5-gutenberg-4B
datasets:
- jondurbin/gutenberg-dpo-v0.1
license: mit
tags:
- llama-cpp
- gguf-my-repo
Triangle104/phi3.5-gutenberg-4B-Q4_K_S-GGUF
This model was converted to GGUF format from nbeerbower/phi3.5-gutenberg-4B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
microsoft/Phi-3.5-mini-instruct finetuned on jondurbin/gutenberg-dpo-v0.1. Method
Finetuned using 2x RTX 4060 Ti for 3 epochs.
Fine-tune Llama 3 with ORPO
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/phi3.5-gutenberg-4B-Q4_K_S-GGUF --hf-file phi3.5-gutenberg-4b-q4_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/phi3.5-gutenberg-4B-Q4_K_S-GGUF --hf-file phi3.5-gutenberg-4b-q4_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/phi3.5-gutenberg-4B-Q4_K_S-GGUF --hf-file phi3.5-gutenberg-4b-q4_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/phi3.5-gutenberg-4B-Q4_K_S-GGUF --hf-file phi3.5-gutenberg-4b-q4_k_s.gguf -c 2048