metadata
base_model: Alfitaria/Q25-1.5B-VeoLu
base_model_relation: finetune
library_name: peft
tags:
- mergekit
- merge
- llama-factory
- lora
- llama-cpp
- gguf-my-repo
datasets:
- allura-org/fujin-cleaned-stage-1
- Dampfinchen/Creative_Writing_Multiturn
- ToastyPigeon/SpringDragon
- allura-org/medquad_sharegpt
- allura-org/scienceqa_sharegpt
- Alignment-Lab-AI/orcamath-sharegpt
Triangle104/Q25-1.5B-VeoLu-Q4_K_M-GGUF
This model was converted to GGUF format from Alfitaria/Q25-1.5B-VeoLu
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Q25-1.5B-VeoLu-Q4_K_M-GGUF --hf-file q25-1.5b-veolu-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Q25-1.5B-VeoLu-Q4_K_M-GGUF --hf-file q25-1.5b-veolu-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Q25-1.5B-VeoLu-Q4_K_M-GGUF --hf-file q25-1.5b-veolu-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Q25-1.5B-VeoLu-Q4_K_M-GGUF --hf-file q25-1.5b-veolu-q4_k_m.gguf -c 2048