Triangle104
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -40,13 +40,8 @@ INTELLECT-1 is the first collaboratively trained 10
|
|
40 |
billion parameter language model trained from scratch on 1 trillion
|
41 |
tokens of English text and code.
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
This is an instruct model. The base model associated with it is INTELLECT-1.
|
48 |
|
49 |
-
|
50 |
INTELLECT-1 was trained on up to 14 concurrent nodes
|
51 |
distributed across 3 continents, with contributions from 30 independent
|
52 |
community contributors providing compute.
|
@@ -63,18 +58,10 @@ The model was trained using the DiLoCo
|
|
63 |
custom int8 all-reduce kernels to reduce the communication payload
|
64 |
required, greatly reducing the communication overhead by a factor 400x.
|
65 |
|
66 |
-
|
67 |
For more detailed technical insights, please refer to our technical paper.
|
68 |
|
69 |
-
|
70 |
Note: You must add a BOS token at the beginning of each sample. Performance may be impacted otherwise.
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
Usage
|
79 |
|
80 |
|
@@ -94,13 +81,6 @@ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
94 |
|
95 |
print(output_text)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
Example text generation pipeline
|
105 |
|
106 |
|
@@ -113,13 +93,6 @@ torch.set_default_device("cuda")
|
|
113 |
pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
|
114 |
print(pipe("What is prime intellect ?"))
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
Model Details
|
124 |
|
125 |
|
@@ -132,12 +105,6 @@ Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, waiting_, topt
|
|
132 |
Release Date: 29 Nov 2024
|
133 |
Model License: Apache 2.0
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
Technical Specifications
|
142 |
|
143 |
|
@@ -146,52 +113,33 @@ Model License: Apache 2.0
|
|
146 |
|
147 |
|
148 |
|
149 |
-
Parameter
|
150 |
Value
|
151 |
-
|
152 |
-
|
153 |
|
154 |
-
Parameter Size
|
155 |
10B
|
156 |
|
157 |
-
|
158 |
-
Number of Layers
|
159 |
42
|
160 |
|
161 |
-
|
162 |
-
Number of Attention Heads
|
163 |
32
|
164 |
|
165 |
-
|
166 |
-
Hidden Size
|
167 |
4096
|
168 |
|
169 |
-
|
170 |
-
Context Length
|
171 |
8192
|
172 |
|
173 |
-
|
174 |
-
Vocabulary Size
|
175 |
128256
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
Training Details:
|
183 |
-
|
184 |
-
|
185 |
Dataset: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
|
186 |
Tokens: 1 Trillion
|
187 |
Optimizer: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
Post-training
|
196 |
|
197 |
|
@@ -214,43 +162,32 @@ Arcee AI to combine the models, generate the data sets, and distill the
|
|
214 |
logits, respectively. For training data, we used a diverse set of
|
215 |
high-quality datasets:
|
216 |
|
217 |
-
|
218 |
New Datasets (released with INTELLECT-1):
|
219 |
-
|
220 |
-
|
221 |
arcee-ai/EvolKit-75k (generated via EvolKit)
|
222 |
arcee-ai/Llama-405B-Logits
|
223 |
arcee-ai/The-Tomb
|
224 |
|
225 |
-
|
226 |
Instruction Following:
|
227 |
-
|
228 |
-
|
229 |
mlabonne/open-perfectblend-fixed (generalist capabilities)
|
230 |
microsoft/orca-agentinstruct-1M-v1-cleaned (Chain-of-Thought)
|
231 |
Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
|
232 |
|
233 |
-
|
234 |
Domain-Specific:
|
235 |
-
|
236 |
-
|
237 |
Team-ACE/ToolACE (function calling)
|
238 |
Synthia coder (programming)
|
239 |
ServiceNow-AI/M2Lingual (multilingual)
|
240 |
AI-MO/NuminaMath-TIR (mathematics)
|
241 |
|
242 |
-
|
243 |
Tulu-3 Persona Datasets:
|
244 |
-
|
245 |
-
|
246 |
allenai/tulu-3-sft-personas-code
|
247 |
allenai/tulu-3-sft-personas-math
|
248 |
allenai/tulu-3-sft-personas-math-grade
|
249 |
allenai/tulu-3-sft-personas-algebra
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
Second, we execute 8 distinct Direct Preference Optimization (DPO)
|
255 |
runs with various combinations of data sets to enhance specific
|
256 |
performance metrics and align the model with human preferences. A key
|
@@ -259,7 +196,6 @@ Llama-3 tokenizer, which allowed us to utilize logits from
|
|
259 |
Llama-3.1-405B to heal and maintain precision during the post-training
|
260 |
process via DistillKit.
|
261 |
|
262 |
-
|
263 |
Finally, we performed 16 strategic merges between candidate models
|
264 |
using MergeKit to create superior combined models that leverage the
|
265 |
strengths of different training runs. During the post-training phase, we
|
@@ -269,99 +205,11 @@ However, when switching to the Llama 3.1 chat template, the loss for
|
|
269 |
these trainings started much lower at approximately 1.1, indicating
|
270 |
better alignment with the underlying Llama 3 tokenizer.
|
271 |
|
272 |
-
|
273 |
The combination of these post-training techniques resulted in
|
274 |
significant improvements in various benchmarks, particularly in
|
275 |
knowledge retrieval, grade school math, instruction following and
|
276 |
reasoning.
|
277 |
|
278 |
-
|
279 |
-
Performance on benchmarks
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
Model
|
286 |
-
Size
|
287 |
-
Tokens
|
288 |
-
MMLU
|
289 |
-
GPQA
|
290 |
-
GSM8K
|
291 |
-
ARC-C
|
292 |
-
Hellaswag
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
INTELLECT-Instruct
|
297 |
-
10B
|
298 |
-
1T
|
299 |
-
49.89
|
300 |
-
28.32
|
301 |
-
38.58
|
302 |
-
54.52
|
303 |
-
71.42
|
304 |
-
|
305 |
-
|
306 |
-
MPT-7B-Chat
|
307 |
-
7B
|
308 |
-
1T
|
309 |
-
36.29
|
310 |
-
26.79
|
311 |
-
8.26
|
312 |
-
51.02
|
313 |
-
75.88
|
314 |
-
|
315 |
-
|
316 |
-
Falcon-7B-Instruct
|
317 |
-
7B
|
318 |
-
1.5T
|
319 |
-
25.21
|
320 |
-
26.34
|
321 |
-
4.93
|
322 |
-
45.82
|
323 |
-
70.61
|
324 |
-
|
325 |
-
|
326 |
-
LLM360-AmberChat
|
327 |
-
7B
|
328 |
-
1.4T
|
329 |
-
36.02
|
330 |
-
27.23
|
331 |
-
6.14
|
332 |
-
43.94
|
333 |
-
73.94
|
334 |
-
|
335 |
-
|
336 |
-
LLaMA2-7B-Chat
|
337 |
-
7B
|
338 |
-
2T
|
339 |
-
47.20
|
340 |
-
28.57
|
341 |
-
23.96
|
342 |
-
53.33
|
343 |
-
78.69
|
344 |
-
|
345 |
-
|
346 |
-
LLaMA2-13B-Chat
|
347 |
-
13B
|
348 |
-
2T
|
349 |
-
53.51
|
350 |
-
28.35
|
351 |
-
37.15
|
352 |
-
59.73
|
353 |
-
82.47
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
Citations
|
366 |
|
367 |
|
@@ -369,7 +217,6 @@ LLaMA2-13B-Chat
|
|
369 |
|
370 |
If you use this model in your research, please cite it as follows:
|
371 |
|
372 |
-
|
373 |
@article{jaghouar2024intellect,
|
374 |
title={INTELLECT-1 Technical Report.},
|
375 |
author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes},
|
|
|
40 |
billion parameter language model trained from scratch on 1 trillion
|
41 |
tokens of English text and code.
|
42 |
|
|
|
|
|
|
|
|
|
43 |
This is an instruct model. The base model associated with it is INTELLECT-1.
|
44 |
|
|
|
45 |
INTELLECT-1 was trained on up to 14 concurrent nodes
|
46 |
distributed across 3 continents, with contributions from 30 independent
|
47 |
community contributors providing compute.
|
|
|
58 |
custom int8 all-reduce kernels to reduce the communication payload
|
59 |
required, greatly reducing the communication overhead by a factor 400x.
|
60 |
|
|
|
61 |
For more detailed technical insights, please refer to our technical paper.
|
62 |
|
|
|
63 |
Note: You must add a BOS token at the beginning of each sample. Performance may be impacted otherwise.
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
Usage
|
66 |
|
67 |
|
|
|
81 |
|
82 |
print(output_text)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
Example text generation pipeline
|
85 |
|
86 |
|
|
|
93 |
pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
|
94 |
print(pipe("What is prime intellect ?"))
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
Model Details
|
97 |
|
98 |
|
|
|
105 |
Release Date: 29 Nov 2024
|
106 |
Model License: Apache 2.0
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
Technical Specifications
|
109 |
|
110 |
|
|
|
113 |
|
114 |
|
115 |
|
116 |
+
Parameter:
|
117 |
Value
|
|
|
|
|
118 |
|
119 |
+
Parameter Size:
|
120 |
10B
|
121 |
|
122 |
+
Number of Layers:
|
|
|
123 |
42
|
124 |
|
125 |
+
Number of Attention Heads:
|
|
|
126 |
32
|
127 |
|
128 |
+
Hidden Size:
|
|
|
129 |
4096
|
130 |
|
131 |
+
Context Length:
|
|
|
132 |
8192
|
133 |
|
134 |
+
Vocabulary Size:
|
|
|
135 |
128256
|
136 |
|
|
|
|
|
|
|
|
|
|
|
137 |
Training Details:
|
138 |
+
-
|
|
|
139 |
Dataset: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
|
140 |
Tokens: 1 Trillion
|
141 |
Optimizer: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
Post-training
|
144 |
|
145 |
|
|
|
162 |
logits, respectively. For training data, we used a diverse set of
|
163 |
high-quality datasets:
|
164 |
|
|
|
165 |
New Datasets (released with INTELLECT-1):
|
166 |
+
-
|
|
|
167 |
arcee-ai/EvolKit-75k (generated via EvolKit)
|
168 |
arcee-ai/Llama-405B-Logits
|
169 |
arcee-ai/The-Tomb
|
170 |
|
|
|
171 |
Instruction Following:
|
172 |
+
-
|
|
|
173 |
mlabonne/open-perfectblend-fixed (generalist capabilities)
|
174 |
microsoft/orca-agentinstruct-1M-v1-cleaned (Chain-of-Thought)
|
175 |
Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
|
176 |
|
|
|
177 |
Domain-Specific:
|
178 |
+
-
|
|
|
179 |
Team-ACE/ToolACE (function calling)
|
180 |
Synthia coder (programming)
|
181 |
ServiceNow-AI/M2Lingual (multilingual)
|
182 |
AI-MO/NuminaMath-TIR (mathematics)
|
183 |
|
|
|
184 |
Tulu-3 Persona Datasets:
|
185 |
+
-
|
|
|
186 |
allenai/tulu-3-sft-personas-code
|
187 |
allenai/tulu-3-sft-personas-math
|
188 |
allenai/tulu-3-sft-personas-math-grade
|
189 |
allenai/tulu-3-sft-personas-algebra
|
190 |
|
|
|
|
|
|
|
191 |
Second, we execute 8 distinct Direct Preference Optimization (DPO)
|
192 |
runs with various combinations of data sets to enhance specific
|
193 |
performance metrics and align the model with human preferences. A key
|
|
|
196 |
Llama-3.1-405B to heal and maintain precision during the post-training
|
197 |
process via DistillKit.
|
198 |
|
|
|
199 |
Finally, we performed 16 strategic merges between candidate models
|
200 |
using MergeKit to create superior combined models that leverage the
|
201 |
strengths of different training runs. During the post-training phase, we
|
|
|
205 |
these trainings started much lower at approximately 1.1, indicating
|
206 |
better alignment with the underlying Llama 3 tokenizer.
|
207 |
|
|
|
208 |
The combination of these post-training techniques resulted in
|
209 |
significant improvements in various benchmarks, particularly in
|
210 |
knowledge retrieval, grade school math, instruction following and
|
211 |
reasoning.
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
Citations
|
214 |
|
215 |
|
|
|
217 |
|
218 |
If you use this model in your research, please cite it as follows:
|
219 |
|
|
|
220 |
@article{jaghouar2024intellect,
|
221 |
title={INTELLECT-1 Technical Report.},
|
222 |
author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes},
|