Text Generation
GGUF
English
Chinese
medical
llama-cpp
gguf-my-repo
Inference Endpoints
conversational
Triangle104 commited on
Commit
adde385
·
verified ·
1 Parent(s): cb4fb90

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +0 -56
README.md CHANGED
@@ -18,62 +18,6 @@ tags:
18
  This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-7B`](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) for more details on the model.
20
 
21
- ---
22
- Model details:
23
- -
24
- HuatuoGPT-o1 is a medical LLM designed for advanced
25
- medical reasoning. It generates a complex thought process, reflecting
26
- and refining its reasoning, before providing a final response.
27
-
28
-
29
- For more information, visit our GitHub repository:
30
- https://github.com/FreedomIntelligence/HuatuoGPT-o1.
31
-
32
-
33
- Usage
34
-
35
-
36
-
37
-
38
- You can use HuatuoGPT-o1-7B in the same way as Qwen2.5-7B-Instruct. You can deploy it with tools like vllm or Sglang, or perform direct inference:
39
-
40
- from transformers import AutoModelForCausalLM, AutoTokenizer
41
-
42
- model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto")
43
- tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B")
44
-
45
- input_text = "How to stop a cough?"
46
- messages = [{"role": "user", "content": input_text}]
47
-
48
- inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
49
- ), return_tensors="pt").to(model.device)
50
- outputs = model.generate(**inputs, max_new_tokens=2048)
51
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
52
-
53
- HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:
54
-
55
- ## Thinking
56
- [Reasoning process]
57
-
58
- ## Final Response
59
- [Output]
60
-
61
- 📖 Citation
62
-
63
-
64
-
65
-
66
- @misc{chen2024huatuogpto1medicalcomplexreasoning,
67
- title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
68
- author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
69
- year={2024},
70
- eprint={2412.18925},
71
- archivePrefix={arXiv},
72
- primaryClass={cs.CL},
73
- url={https://arxiv.org/abs/2412.18925},
74
- }
75
-
76
- ---
77
  ## Use with llama.cpp
78
  Install llama.cpp through brew (works on Mac and Linux)
79
 
 
18
  This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-7B`](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) for more details on the model.
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Use with llama.cpp
22
  Install llama.cpp through brew (works on Mac and Linux)
23