hilco's picture
Finished training.
c259260 verified
---
license: apache-2.0
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: navsad/navid_test_bert
model-index:
- name: navsad_navid_test_bert-finetuned-lora-tweet_eval_hate
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: hate
split: validation
args: hate
metrics:
- type: accuracy
value: 0.705
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# navsad_navid_test_bert-finetuned-lora-tweet_eval_hate
This model is a fine-tuned version of [navsad/navid_test_bert](https://huggingface.co/navsad/navid_test_bert) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.45 | None | 0 |
| 0.684 | 0.7088 | 0 |
| 0.7 | 0.5508 | 1 |
| 0.698 | 0.4925 | 2 |
| 0.705 | 0.4712 | 3 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2