hilco's picture
Finished training.
4ede1ec verified
|
raw
history blame
1.97 kB
---
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: matthewburke/korean_sentiment
model-index:
- name: matthewburke_korean_sentiment-finetuned-lora-tweet_eval_irony
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: validation
args: irony
metrics:
- type: accuracy
value: 0.5905759162303665
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# matthewburke_korean_sentiment-finetuned-lora-tweet_eval_irony
This model is a fine-tuned version of [matthewburke/korean_sentiment](https://huggingface.co/matthewburke/korean_sentiment) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.5906
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.4817 | None | 0 |
| 0.5832 | 0.6875 | 0 |
| 0.5623 | 0.6665 | 1 |
| 0.5675 | 0.6484 | 2 |
| 0.5623 | 0.6406 | 3 |
| 0.5665 | 0.6353 | 4 |
| 0.5592 | 0.6288 | 5 |
| 0.5686 | 0.6241 | 6 |
| 0.5906 | 0.6219 | 7 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2