metadata
library_name: peft
tags:
- parquet
- text-classification
datasets:
- ag_news
metrics:
- accuracy
base_model: finiteautomata/betonews-tweetcontext
model-index:
- name: finiteautomata_betonews-tweetcontext-finetuned-lora-ag_news
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- type: accuracy
value: 0.8951315789473684
name: accuracy
finiteautomata_betonews-tweetcontext-finetuned-lora-ag_news
This model is a fine-tuned version of finiteautomata/betonews-tweetcontext on the ag_news dataset. It achieves the following results on the evaluation set:
- accuracy: 0.8951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
accuracy | train_loss | epoch |
---|---|---|
0.2917 | None | 0 |
0.8753 | 0.4568 | 0 |
0.8853 | 0.3479 | 1 |
0.8918 | 0.3158 | 2 |
0.8951 | 0.3008 | 3 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2