lilt-invoices / README.md
Toobese's picture
End of training
0288950
|
raw
history blame
1.96 kB
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-invoices
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-invoices
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1475
- Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Illingaddress: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2}
- Nvoicedate: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Nvoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Otaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3