|
--- |
|
license: mit |
|
base_model: SCUT-DLVCLab/lilt-roberta-en-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lilt-invoices |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lilt-invoices |
|
|
|
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1475 |
|
- Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Illingaddress: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} |
|
- Nvoicedate: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Nvoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Otaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} |
|
- Overall Precision: 1.0 |
|
- Overall Recall: 1.0 |
|
- Overall F1: 1.0 |
|
- Overall Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 20 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|