Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: transformers
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
tags:
|
| 8 |
+
- graphic-design
|
| 9 |
+
- design-generation
|
| 10 |
+
- layout-planning
|
| 11 |
+
- qwen3
|
| 12 |
+
base_model: Qwen/Qwen3-8B
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# DesignAsCode Semantic Planner
|
| 16 |
+
|
| 17 |
+
The Semantic Planner for the [DesignAsCode](https://github.com/liuziyuan1109/design-as-code) pipeline. Given a natural-language design request, it generates a structured design plan — including layout reasoning, layer grouping, image generation prompts, and text element specifications.
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
| | |
|
| 22 |
+
|---|---|
|
| 23 |
+
| **Base Model** | Qwen3-8B |
|
| 24 |
+
| **Fine-tuning** | Supervised Fine-Tuning (SFT) |
|
| 25 |
+
| **Size** | 16 GB (fp16) |
|
| 26 |
+
| **Context Window** | 8,192 tokens |
|
| 27 |
+
|
| 28 |
+
## Training Data
|
| 29 |
+
|
| 30 |
+
Trained on ~10k examples sampled from the [DesignAsCode Training Data](https://huggingface.co/datasets/Tony1109/DesignAsCode-training-data), which contains 19,479 design samples distilled from the [Crello](https://huggingface.co/datasets/cyberagent/crello) dataset using GPT-4o and GPT-o3. No additional data was used.
|
| 31 |
+
|
| 32 |
+
### Training Format
|
| 33 |
+
|
| 34 |
+
- **Input:** `prompt` — natural-language design request
|
| 35 |
+
- **Output:** `layout_thought` + `grouping` + `image_generator` + `generate_text`
|
| 36 |
+
|
| 37 |
+
See the [training data repo](https://huggingface.co/datasets/Tony1109/DesignAsCode-training-data) for field details.
|
| 38 |
+
|
| 39 |
+
## Training Configuration
|
| 40 |
+
|
| 41 |
+
| | |
|
| 42 |
+
|---|---|
|
| 43 |
+
| **Batch Size** | 1 |
|
| 44 |
+
| **Gradient Accumulation** | 2 |
|
| 45 |
+
| **Learning Rate** | 5e-5 (AdamW) |
|
| 46 |
+
| **Epochs** | 2 |
|
| 47 |
+
| **Max Sequence Length** | 8,192 tokens |
|
| 48 |
+
| **Precision** | bfloat16 |
|
| 49 |
+
| **Loss** | Completion-only (only on generated tokens) |
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 55 |
+
import torch
|
| 56 |
+
|
| 57 |
+
model_path = "Tony1109/DesignAsCode-planner"
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
model_path,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
device_map="auto"
|
| 63 |
+
)
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
For full pipeline usage (plan → retrieve → implement → refine), see the [project repo](https://github.com/liuziyuan1109/design-as-code) and [QUICKSTART.md](https://github.com/liuziyuan1109/design-as-code/blob/main/QUICKSTART.md).
|
| 67 |
+
|
| 68 |
+
## Outputs
|
| 69 |
+
|
| 70 |
+
The model generates semi-structured text with XML tags:
|
| 71 |
+
|
| 72 |
+
- `<layout_thought>...</layout_thought>` — detailed layout reasoning
|
| 73 |
+
- `<grouping>...</grouping>` — JSON array grouping related layers with thematic labels
|
| 74 |
+
- `<image_generator>...</image_generator>` — JSON array of per-layer image generation prompts
|
| 75 |
+
- `<generate_text>...</generate_text>` — JSON array of text element specifications (font, size, alignment, etc.)
|
| 76 |
+
|
| 77 |
+
## Ethical Considerations
|
| 78 |
+
|
| 79 |
+
- Designs should be reviewed by humans before production use.
|
| 80 |
+
- May reflect biases present in the training data.
|
| 81 |
+
- Generated content should be checked for copyright compliance.
|
| 82 |
+
|
| 83 |
+
## Citation
|
| 84 |
+
|
| 85 |
+
```bibtex
|
| 86 |
+
@article{liu2025designascode,
|
| 87 |
+
title = {DesignAsCode: Bridging Structural Editability and
|
| 88 |
+
Visual Fidelity in Graphic Design Generation},
|
| 89 |
+
author = {Liu, Ziyuan and Sun, Shizhao and Huang, Danqing
|
| 90 |
+
and Shi, Yingdong and Zhang, Meisheng and Li, Ji
|
| 91 |
+
and Yu, Jingsong and Bian, Jiang},
|
| 92 |
+
journal = {arXiv preprint},
|
| 93 |
+
year = {2025}
|
| 94 |
+
}
|
| 95 |
+
```
|