Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,83 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: stabilityai/stablelm-3b-4e1t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
|
19 |
|
20 |
-
- **Developed by:** [
|
21 |
-
- **Shared by [optional]:** [
|
22 |
-
- **Model type:**
|
23 |
-
- **Language(s) (NLP):**
|
24 |
-
- **License:**
|
25 |
-
- **Finetuned from model [optional]:** [
|
26 |
|
27 |
### Model Sources [optional]
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
- **Repository:** [More Information Needed]
|
32 |
-
- **Paper [optional]:** [More Information Needed]
|
33 |
- **Demo [optional]:** [More Information Needed]
|
34 |
|
35 |
## Uses
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
### Direct Use
|
40 |
|
41 |
-
|
42 |
|
43 |
-
[More Information Needed]
|
44 |
|
45 |
### Downstream Use [optional]
|
46 |
|
47 |
-
|
48 |
|
49 |
-
[More Information Needed]
|
50 |
|
51 |
### Out-of-Scope Use
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
## Bias, Risks, and Limitations
|
58 |
|
59 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
|
61 |
-
[
|
62 |
|
63 |
### Recommendations
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
69 |
## How to Get Started with the Model
|
70 |
|
@@ -76,66 +89,115 @@ Use the code below to get started with the model.
|
|
76 |
|
77 |
### Training Data
|
78 |
|
79 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
|
81 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
### Training Procedure
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
#### Preprocessing [optional]
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
#### Training Hyperparameters
|
93 |
|
94 |
-
- **Training regime:**
|
95 |
|
96 |
#### Speeds, Sizes, Times [optional]
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
##
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
|
140 |
## Environmental Impact
|
141 |
|
@@ -153,50 +215,167 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
153 |
|
154 |
### Model Architecture and Objective
|
155 |
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
### Compute Infrastructure
|
159 |
|
160 |
-
|
161 |
|
162 |
#### Hardware
|
163 |
|
164 |
-
|
165 |
|
166 |
#### Software
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
-
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## More Information [optional]
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
|
192 |
## Model Card Authors [optional]
|
193 |
|
194 |
-
[
|
195 |
|
196 |
## Model Card Contact
|
197 |
|
198 |
-
[
|
199 |
-
|
200 |
|
201 |
## Training procedure
|
202 |
|
@@ -216,4 +395,4 @@ The following `bitsandbytes` quantization config was used during training:
|
|
216 |
### Framework versions
|
217 |
|
218 |
|
219 |
-
- PEFT 0.6.2.dev0
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: stabilityai/stablelm-3b-4e1t
|
4 |
+
license: mit
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
- bertscore
|
10 |
+
- accuracy
|
11 |
+
tags:
|
12 |
+
- medical
|
13 |
---
|
14 |
|
15 |
# Model Card for Model ID
|
16 |
|
17 |
+
Welcome to StableMed , it's a stable 3b llm - alpha fine tuned model for Medical Question and Answering.
|
|
|
|
|
18 |
|
19 |
## Model Details
|
20 |
|
21 |
### Model Description
|
22 |
|
23 |
+
This is a stable 3b finetune for medical QnA using MedQuad.
|
24 |
+
It's intended for education in public health and sanitation,
|
25 |
+
specifically to improve our understanding of outreach and communication.
|
26 |
|
27 |
|
28 |
|
29 |
+
- **Developed by:** [Tonic](https://huggingface.co/Tonic)
|
30 |
+
- **Shared by [optional]:** [Tonic](https://huggingface.co/Tonic)
|
31 |
+
- **Model type:** stable LM 3b - Alpha
|
32 |
+
- **Language(s) (NLP):** English
|
33 |
+
- **License:** MIT
|
34 |
+
- **Finetuned from model [optional]:** [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
|
35 |
|
36 |
### Model Sources [optional]
|
37 |
|
38 |
+
- **Repository:** [Tonic/stablemed](https://huggingface.co/Tonic/stablemed)
|
|
|
|
|
|
|
39 |
- **Demo [optional]:** [More Information Needed]
|
40 |
|
41 |
## Uses
|
42 |
|
43 |
+
Use this model for educational purposes only , do not use for decision support in the wild.
|
44 |
+
|
45 |
+
Use this model for Medical Q n A.
|
46 |
+
|
47 |
+
Use this model as a educational tool for "miniature" models.
|
48 |
|
49 |
### Direct Use
|
50 |
|
51 |
+
Medical Question and Answering
|
52 |
|
|
|
53 |
|
54 |
### Downstream Use [optional]
|
55 |
|
56 |
+
Finetune this model to work in a network or swarm of medical finetunes.
|
57 |
|
|
|
58 |
|
59 |
### Out-of-Scope Use
|
60 |
|
61 |
+
do not use this model in the wild.
|
62 |
|
63 |
+
do not use this model directly.
|
64 |
+
|
65 |
+
do not use this model for real world decision support.
|
66 |
|
67 |
## Bias, Risks, and Limitations
|
68 |
|
|
|
69 |
|
70 |
+
[We use Giskard for evaluation - Coming Soon!]
|
71 |
|
72 |
### Recommendations
|
73 |
|
74 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
75 |
+
|
76 |
+
DO NOT USE THIS MODEL WITHOUT EVALUATION
|
77 |
+
|
78 |
+
DO NOT USE THIS MODEL WITHOUT BENCHMARKING
|
79 |
|
80 |
+
DO NOT USE THIS MODEL WITHOUT FURTHER FINETUNING
|
81 |
|
82 |
## How to Get Started with the Model
|
83 |
|
|
|
89 |
|
90 |
### Training Data
|
91 |
|
|
|
92 |
|
93 |
+
[Dataset](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset)
|
94 |
+
|
95 |
+
```json
|
96 |
+
output
|
97 |
+
Dataset({
|
98 |
+
features: ['qtype', 'Question', 'Answer'],
|
99 |
+
num_rows: 16407
|
100 |
+
})
|
101 |
+
```
|
102 |
|
103 |
### Training Procedure
|
104 |
|
105 |
+
```json
|
106 |
+
trainable params: 12940288 || all params: 1539606528 || trainable%: 0.8404931886596937
|
107 |
+
```
|
108 |
+
|
109 |
+
Using Lora
|
110 |
|
111 |
#### Preprocessing [optional]
|
112 |
|
113 |
+
Original:
|
114 |
+
|
115 |
+
```json
|
116 |
+
StableLMEpochForCausalLM(
|
117 |
+
(model): StableLMEpochModel(
|
118 |
+
(embed_tokens): Embedding(50304, 2560)
|
119 |
+
(layers): ModuleList(
|
120 |
+
(0-31): 32 x DecoderLayer(
|
121 |
+
(self_attn): Attention(
|
122 |
+
(q_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
123 |
+
(k_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
124 |
+
(v_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
125 |
+
(o_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
126 |
+
(rotary_emb): RotaryEmbedding()
|
127 |
+
)
|
128 |
+
(mlp): MLP(
|
129 |
+
(gate_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
|
130 |
+
(up_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
|
131 |
+
(down_proj): Linear4bit(in_features=6912, out_features=2560, bias=False)
|
132 |
+
(act_fn): SiLU()
|
133 |
+
)
|
134 |
+
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
135 |
+
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
139 |
+
)
|
140 |
+
(lm_head): Linear(in_features=2560, out_features=50304, bias=False)
|
141 |
+
)
|
142 |
+
```
|
143 |
|
144 |
|
145 |
#### Training Hyperparameters
|
146 |
|
147 |
+
- **Training regime:** <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
148 |
|
149 |
#### Speeds, Sizes, Times [optional]
|
150 |
|
151 |
+
```json
|
152 |
+
TrainOutput(global_step=2051, training_loss=0.6156479549198718, metrics={'train_runtime': 22971.4974, 'train_samples_per_second': 0.357, 'train_steps_per_second': 0.089, 'total_flos': 6.5950444363776e+16, 'train_loss': 0.6156479549198718, 'epoch': 0.5})
|
153 |
+
```
|
154 |
+
|
155 |
+
## Results
|
156 |
+
|
157 |
+
| Value | Measurement |
|
158 |
+
|-------|-------------|
|
159 |
+
| 50 | 1.427000 |
|
160 |
+
| 100 | 0.763200 |
|
161 |
+
| 150 | 0.708200 |
|
162 |
+
| 200 | 0.662300 |
|
163 |
+
| 250 | 0.650900 |
|
164 |
+
| 300 | 0.617400 |
|
165 |
+
| 350 | 0.602900 |
|
166 |
+
| 400 | 0.608900 |
|
167 |
+
| 450 | 0.596100 |
|
168 |
+
| 500 | 0.602000 |
|
169 |
+
| 550 | 0.594700 |
|
170 |
+
| 600 | 0.584700 |
|
171 |
+
| 650 | 0.611000 |
|
172 |
+
| 700 | 0.558700 |
|
173 |
+
| 750 | 0.616300 |
|
174 |
+
| 800 | 0.568700 |
|
175 |
+
| 850 | 0.597300 |
|
176 |
+
| 900 | 0.607400 |
|
177 |
+
| 950 | 0.563200 |
|
178 |
+
| 1000 | 0.602900 |
|
179 |
+
| 1050 | 0.594900 |
|
180 |
+
| 1100 | 0.583000 |
|
181 |
+
| 1150 | 0.604500 |
|
182 |
+
| 1200 | 0.547400 |
|
183 |
+
| 1250 | 0.586600 |
|
184 |
+
| 1300 | 0.554300 |
|
185 |
+
| 1350 | 0.581000 |
|
186 |
+
| 1400 | 0.578900 |
|
187 |
+
| 1450 | 0.563200 |
|
188 |
+
| 1500 | 0.556800 |
|
189 |
+
| 1550 | 0.570300 |
|
190 |
+
| 1600 | 0.599800 |
|
191 |
+
| 1650 | 0.556000 |
|
192 |
+
| 1700 | 0.592500 |
|
193 |
+
| 1750 | 0.597200 |
|
194 |
+
| 1800 | 0.559100 |
|
195 |
+
| 1850 | 0.586100 |
|
196 |
+
| 1900 | 0.581100 |
|
197 |
+
| 1950 | 0.589400 |
|
198 |
+
| 2000 | 0.581100 |
|
199 |
+
| 2050 | 0.533100 |
|
200 |
|
|
|
|
|
|
|
201 |
|
202 |
## Environmental Impact
|
203 |
|
|
|
215 |
|
216 |
### Model Architecture and Objective
|
217 |
|
218 |
+
with LORA :
|
219 |
+
|
220 |
+
```json
|
221 |
+
PeftModelForCausalLM(
|
222 |
+
(base_model): LoraModel(
|
223 |
+
(model): StableLMEpochForCausalLM(
|
224 |
+
(model): StableLMEpochModel(
|
225 |
+
(embed_tokens): Embedding(50304, 2560)
|
226 |
+
(layers): ModuleList(
|
227 |
+
(0-31): 32 x DecoderLayer(
|
228 |
+
(self_attn): Attention(
|
229 |
+
(q_proj): Linear4bit(
|
230 |
+
(lora_dropout): ModuleDict(
|
231 |
+
(default): Dropout(p=0.05, inplace=False)
|
232 |
+
)
|
233 |
+
(lora_A): ModuleDict(
|
234 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
235 |
+
)
|
236 |
+
(lora_B): ModuleDict(
|
237 |
+
(default): Linear(in_features=8, out_features=2560, bias=False)
|
238 |
+
)
|
239 |
+
(lora_embedding_A): ParameterDict()
|
240 |
+
(lora_embedding_B): ParameterDict()
|
241 |
+
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
242 |
+
)
|
243 |
+
(k_proj): Linear4bit(
|
244 |
+
(lora_dropout): ModuleDict(
|
245 |
+
(default): Dropout(p=0.05, inplace=False)
|
246 |
+
)
|
247 |
+
(lora_A): ModuleDict(
|
248 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
249 |
+
)
|
250 |
+
(lora_B): ModuleDict(
|
251 |
+
(default): Linear(in_features=8, out_features=2560, bias=False)
|
252 |
+
)
|
253 |
+
(lora_embedding_A): ParameterDict()
|
254 |
+
(lora_embedding_B): ParameterDict()
|
255 |
+
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
256 |
+
)
|
257 |
+
(v_proj): Linear4bit(
|
258 |
+
(lora_dropout): ModuleDict(
|
259 |
+
(default): Dropout(p=0.05, inplace=False)
|
260 |
+
)
|
261 |
+
(lora_A): ModuleDict(
|
262 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
263 |
+
)
|
264 |
+
(lora_B): ModuleDict(
|
265 |
+
(default): Linear(in_features=8, out_features=2560, bias=False)
|
266 |
+
)
|
267 |
+
(lora_embedding_A): ParameterDict()
|
268 |
+
(lora_embedding_B): ParameterDict()
|
269 |
+
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
270 |
+
)
|
271 |
+
(o_proj): Linear4bit(
|
272 |
+
(lora_dropout): ModuleDict(
|
273 |
+
(default): Dropout(p=0.05, inplace=False)
|
274 |
+
)
|
275 |
+
(lora_A): ModuleDict(
|
276 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
277 |
+
)
|
278 |
+
(lora_B): ModuleDict(
|
279 |
+
(default): Linear(in_features=8, out_features=2560, bias=False)
|
280 |
+
)
|
281 |
+
(lora_embedding_A): ParameterDict()
|
282 |
+
(lora_embedding_B): ParameterDict()
|
283 |
+
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
|
284 |
+
)
|
285 |
+
(rotary_emb): RotaryEmbedding()
|
286 |
+
)
|
287 |
+
(mlp): MLP(
|
288 |
+
(gate_proj): Linear4bit(
|
289 |
+
(lora_dropout): ModuleDict(
|
290 |
+
(default): Dropout(p=0.05, inplace=False)
|
291 |
+
)
|
292 |
+
(lora_A): ModuleDict(
|
293 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
294 |
+
)
|
295 |
+
(lora_B): ModuleDict(
|
296 |
+
(default): Linear(in_features=8, out_features=6912, bias=False)
|
297 |
+
)
|
298 |
+
(lora_embedding_A): ParameterDict()
|
299 |
+
(lora_embedding_B): ParameterDict()
|
300 |
+
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
|
301 |
+
)
|
302 |
+
(up_proj): Linear4bit(
|
303 |
+
(lora_dropout): ModuleDict(
|
304 |
+
(default): Dropout(p=0.05, inplace=False)
|
305 |
+
)
|
306 |
+
(lora_A): ModuleDict(
|
307 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
308 |
+
)
|
309 |
+
(lora_B): ModuleDict(
|
310 |
+
(default): Linear(in_features=8, out_features=6912, bias=False)
|
311 |
+
)
|
312 |
+
(lora_embedding_A): ParameterDict()
|
313 |
+
(lora_embedding_B): ParameterDict()
|
314 |
+
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
|
315 |
+
)
|
316 |
+
(down_proj): Linear4bit(
|
317 |
+
(lora_dropout): ModuleDict(
|
318 |
+
(default): Dropout(p=0.05, inplace=False)
|
319 |
+
)
|
320 |
+
(lora_A): ModuleDict(
|
321 |
+
(default): Linear(in_features=6912, out_features=8, bias=False)
|
322 |
+
)
|
323 |
+
(lora_B): ModuleDict(
|
324 |
+
(default): Linear(in_features=8, out_features=2560, bias=False)
|
325 |
+
)
|
326 |
+
(lora_embedding_A): ParameterDict()
|
327 |
+
(lora_embedding_B): ParameterDict()
|
328 |
+
(base_layer): Linear4bit(in_features=6912, out_features=2560, bias=False)
|
329 |
+
)
|
330 |
+
(act_fn): SiLU()
|
331 |
+
)
|
332 |
+
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
333 |
+
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
|
337 |
+
)
|
338 |
+
(lm_head): Linear(
|
339 |
+
in_features=2560, out_features=50304, bias=False
|
340 |
+
(lora_dropout): ModuleDict(
|
341 |
+
(default): Dropout(p=0.05, inplace=False)
|
342 |
+
)
|
343 |
+
(lora_A): ModuleDict(
|
344 |
+
(default): Linear(in_features=2560, out_features=8, bias=False)
|
345 |
+
)
|
346 |
+
(lora_B): ModuleDict(
|
347 |
+
(default): Linear(in_features=8, out_features=50304, bias=False)
|
348 |
+
)
|
349 |
+
(lora_embedding_A): ParameterDict()
|
350 |
+
(lora_embedding_B): ParameterDict()
|
351 |
+
)
|
352 |
+
)
|
353 |
+
)
|
354 |
+
)
|
355 |
+
```
|
356 |
|
357 |
### Compute Infrastructure
|
358 |
|
359 |
+
GCS
|
360 |
|
361 |
#### Hardware
|
362 |
|
363 |
+
T4
|
364 |
|
365 |
#### Software
|
366 |
|
367 |
+
transformers
|
368 |
+
peft
|
369 |
+
torch
|
370 |
+
datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
## Model Card Authors [optional]
|
373 |
|
374 |
+
[Tonic](https://huggingface.co/Tonic)
|
375 |
|
376 |
## Model Card Contact
|
377 |
|
378 |
+
[Tonic](https://huggingface.co/Tonic)
|
|
|
379 |
|
380 |
## Training procedure
|
381 |
|
|
|
395 |
### Framework versions
|
396 |
|
397 |
|
398 |
+
- PEFT 0.6.2.dev0
|