roberta-base-NER / README.md
Tirendaz's picture
Update README.md
2c73bd5
|
raw
history blame
2.72 kB
metadata
license: mit
base_model: xlm-roberta-base
datasets:
  - xtreme
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-NER
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xtreme
          type: xtreme
          config: PAN-X.en
          split: validation
          args: PAN-X.en
        metrics:
          - name: Precision
            type: precision
            value: 0.8003614625330182
          - name: Recall
            type: recall
            value: 0.8110735418427726
          - name: F1
            type: f1
            value: 0.8056818976978517
          - name: Accuracy
            type: accuracy
            value: 0.9194332683336213
language:
  - en

roberta-base-NER

This model is a fine-tuned version of xlm-roberta-base on the xtreme dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2935
  • Precision: 0.8004
  • Recall: 0.8111
  • F1: 0.8057
  • Accuracy: 0.9194

Intended uses & limitations

How to use

You can use this model with Transformers pipeline for NER.

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("Tirendaz/roberta-base-NER")
model = AutoModelForTokenClassification.from_pretrained("Tirendaz/roberta-base-NER")

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"

ner_results = nlp(example)
print(ner_results)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 417 0.3359 0.7286 0.7675 0.7476 0.8991
0.4227 2.0 834 0.2951 0.7711 0.7980 0.7843 0.9131
0.2818 3.0 1251 0.2824 0.7852 0.8076 0.7962 0.9174
0.2186 4.0 1668 0.2853 0.7934 0.8150 0.8041 0.9193
0.1801 5.0 2085 0.2935 0.8004 0.8111 0.8057 0.9194

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3