Update README.md
Browse files
README.md
CHANGED
@@ -21,50 +21,5 @@ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion to
|
|
21 |
|
22 |
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
23 |
|
24 |
-
#### This
|
25 |
-
This
|
26 |
-
|
27 |
-
#### Releases Schedule
|
28 |
-
We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison.
|
29 |
-
|
30 |
-
| Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm |
|
31 |
-
|------------|-------------------------------------------------|--------|------|---------------------|
|
32 |
-
| Baseline | [StableLM-Alpha-3B](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)| 800B | -- | 38.31 |
|
33 |
-
| Baseline | [Pythia-1B-intermediate-step-50k-105b](https://huggingface.co/EleutherAI/pythia-1b/tree/step50000) | 105B | 50k | 42.04 |
|
34 |
-
| Baseline | [Pythia-1B](https://huggingface.co/EleutherAI/pythia-1b) | 300B | 143k | 47.16 |
|
35 |
-
| 2023-09-04 | [TinyLlama-1.1B-intermediate-step-50k-105b](https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b) | 105B | 50k | 43.50 |
|
36 |
-
| 2023-09-16 | -- | 500B | -- | -- |
|
37 |
-
| 2023-10-01 | -- | 1T | -- | -- |
|
38 |
-
| 2023-10-16 | -- | 1.5T | -- | -- |
|
39 |
-
| 2023-10-31 | -- | 2T | -- | -- |
|
40 |
-
| 2023-11-15 | -- | 2.5T | -- | -- |
|
41 |
-
| 2023-12-01 | -- | 3T | -- | -- |
|
42 |
-
|
43 |
-
#### How to use
|
44 |
-
You will need the transformers>=4.31
|
45 |
-
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
|
46 |
-
```
|
47 |
-
from transformers import AutoTokenizer
|
48 |
-
import transformers
|
49 |
-
import torch
|
50 |
-
model = "PY007/TinyLlama-1.1B-step-50K-105b"
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
52 |
-
pipeline = transformers.pipeline(
|
53 |
-
"text-generation",
|
54 |
-
model=model,
|
55 |
-
torch_dtype=torch.float16,
|
56 |
-
device_map="auto",
|
57 |
-
)
|
58 |
-
|
59 |
-
sequences = pipeline(
|
60 |
-
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.',
|
61 |
-
do_sample=True,
|
62 |
-
top_k=10,
|
63 |
-
num_return_sequences=1,
|
64 |
-
repetition_penalty=1.5,
|
65 |
-
eos_token_id=tokenizer.eos_token_id,
|
66 |
-
max_length=500,
|
67 |
-
)
|
68 |
-
for seq in sequences:
|
69 |
-
print(f"Result: {seq['generated_text']}")
|
70 |
-
```
|
|
|
21 |
|
22 |
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
23 |
|
24 |
+
#### This Collection
|
25 |
+
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|