metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- wild
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: P.E.R.S_WILD
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wild
type: wild
config: WildReceipt
split: test
args: WildReceipt
metrics:
- name: Precision
type: precision
value: 0.8621359223300971
- name: Recall
type: recall
value: 0.8556090846524432
- name: F1
type: f1
value: 0.8588601036269431
- name: Accuracy
type: accuracy
value: 0.9165934548649243
P.E.R.S_WILD
This model is a fine-tuned version of microsoft/layoutlmv3-base on the wild dataset. It achieves the following results on the evaluation set:
- Loss: 0.3319
- Precision: 0.8621
- Recall: 0.8556
- F1: 0.8589
- Accuracy: 0.9166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.0789 | 100 | 1.7570 | 0.4014 | 0.0807 | 0.1343 | 0.5202 |
No log | 0.1579 | 200 | 1.2158 | 0.5444 | 0.3515 | 0.4272 | 0.6895 |
No log | 0.2368 | 300 | 0.9862 | 0.6676 | 0.4763 | 0.5559 | 0.7534 |
No log | 0.3157 | 400 | 0.8539 | 0.6740 | 0.5898 | 0.6291 | 0.7883 |
1.3192 | 0.3946 | 500 | 0.7150 | 0.7489 | 0.6325 | 0.6858 | 0.8208 |
1.3192 | 0.4736 | 600 | 0.6731 | 0.7487 | 0.6716 | 0.7080 | 0.8288 |
1.3192 | 0.5525 | 700 | 0.6345 | 0.7588 | 0.6848 | 0.7199 | 0.8357 |
1.3192 | 0.6314 | 800 | 0.5903 | 0.7671 | 0.7181 | 0.7418 | 0.8472 |
1.3192 | 0.7103 | 900 | 0.5273 | 0.7743 | 0.7718 | 0.7731 | 0.8690 |
0.7013 | 0.7893 | 1000 | 0.4923 | 0.7939 | 0.7555 | 0.7742 | 0.8689 |
0.7013 | 0.8682 | 1100 | 0.4811 | 0.8147 | 0.7619 | 0.7874 | 0.8742 |
0.7013 | 0.9471 | 1200 | 0.4694 | 0.8006 | 0.7985 | 0.7995 | 0.8812 |
0.7013 | 1.0260 | 1300 | 0.4429 | 0.8246 | 0.8058 | 0.8151 | 0.8866 |
0.7013 | 1.1050 | 1400 | 0.4302 | 0.8135 | 0.8051 | 0.8093 | 0.8863 |
0.4844 | 1.1839 | 1500 | 0.4364 | 0.7964 | 0.8245 | 0.8102 | 0.8875 |
0.4844 | 1.2628 | 1600 | 0.4445 | 0.8012 | 0.8299 | 0.8153 | 0.8857 |
0.4844 | 1.3418 | 1700 | 0.4021 | 0.8175 | 0.8244 | 0.8209 | 0.8918 |
0.4844 | 1.4207 | 1800 | 0.3886 | 0.8290 | 0.8193 | 0.8241 | 0.8958 |
0.4844 | 1.4996 | 1900 | 0.3708 | 0.8271 | 0.8372 | 0.8321 | 0.9000 |
0.411 | 1.5785 | 2000 | 0.3910 | 0.8356 | 0.8310 | 0.8333 | 0.8996 |
0.411 | 1.6575 | 2100 | 0.3550 | 0.8419 | 0.8399 | 0.8409 | 0.9069 |
0.411 | 1.7364 | 2200 | 0.3499 | 0.8374 | 0.8451 | 0.8413 | 0.9066 |
0.411 | 1.8153 | 2300 | 0.3532 | 0.8301 | 0.8512 | 0.8405 | 0.9050 |
0.411 | 1.8942 | 2400 | 0.3763 | 0.8285 | 0.8471 | 0.8377 | 0.9018 |
0.3641 | 1.9732 | 2500 | 0.3508 | 0.8529 | 0.8410 | 0.8469 | 0.9067 |
0.3641 | 2.0521 | 2600 | 0.3616 | 0.8507 | 0.8384 | 0.8445 | 0.9083 |
0.3641 | 2.1310 | 2700 | 0.3705 | 0.8485 | 0.8511 | 0.8498 | 0.9086 |
0.3641 | 2.2099 | 2800 | 0.3527 | 0.8436 | 0.8562 | 0.8498 | 0.9118 |
0.3641 | 2.2889 | 2900 | 0.3383 | 0.8658 | 0.8475 | 0.8566 | 0.9135 |
0.2824 | 2.3678 | 3000 | 0.3395 | 0.8527 | 0.8523 | 0.8525 | 0.9124 |
0.2824 | 2.4467 | 3100 | 0.3364 | 0.8622 | 0.8478 | 0.8549 | 0.9140 |
0.2824 | 2.5257 | 3200 | 0.3383 | 0.8431 | 0.8619 | 0.8524 | 0.9125 |
0.2824 | 2.6046 | 3300 | 0.3377 | 0.8530 | 0.8586 | 0.8558 | 0.9132 |
0.2824 | 2.6835 | 3400 | 0.3389 | 0.8481 | 0.8629 | 0.8554 | 0.9135 |
0.2928 | 2.7624 | 3500 | 0.3319 | 0.8621 | 0.8556 | 0.8589 | 0.9166 |
0.2928 | 2.8414 | 3600 | 0.3341 | 0.8555 | 0.8575 | 0.8565 | 0.9153 |
0.2928 | 2.9203 | 3700 | 0.3341 | 0.8536 | 0.8603 | 0.8569 | 0.9153 |
0.2928 | 2.9992 | 3800 | 0.3305 | 0.8556 | 0.8636 | 0.8596 | 0.9167 |
0.2928 | 3.0781 | 3900 | 0.3313 | 0.8579 | 0.8613 | 0.8596 | 0.9166 |
0.2487 | 3.1571 | 4000 | 0.3326 | 0.8550 | 0.8604 | 0.8577 | 0.9160 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1