Update README.md
Browse files
README.md
CHANGED
@@ -55,111 +55,11 @@ textbooks, rather than just on synthetically generated QA pairs. However, it con
|
|
55 |
_reliability_. While many of its answers are factually accurate, some are not. The outputs of cosmosage
|
56 |
(or any LLM) should not be trusted to be factual.
|
57 |
|
58 |
-
|
59 |
-
<details><summary>See axolotl config</summary>
|
60 |
-
|
61 |
-
axolotl version: `0.4.0`
|
62 |
-
```yaml
|
63 |
-
base_model: /workspace/output/cosmosage_base/
|
64 |
-
model_type: MistralForCausalLM
|
65 |
-
tokenizer_type: LlamaTokenizer
|
66 |
-
is_mistral_derived_model: true
|
67 |
-
|
68 |
-
load_in_8bit: false
|
69 |
-
load_in_4bit: false
|
70 |
-
strict: false
|
71 |
-
|
72 |
-
datasets:
|
73 |
-
- path: /workspace/input/datasets/qa_tune/arxiv_metadata_qa3.jsonl
|
74 |
-
type: sharegpt
|
75 |
-
- path: /workspace/input/datasets/qa_tune/arxiv_refined_qa.jsonl
|
76 |
-
type: sharegpt
|
77 |
-
- path: /workspace/input/datasets/qa_tune/arxiv_summary3.jsonl
|
78 |
-
type: sharegpt
|
79 |
-
- path: /workspace/input/datasets/qa_tune/cosmology_qa.jsonl
|
80 |
-
type: alpaca_chat.load_qa
|
81 |
-
- path: /workspace/input/datasets/qa_tune/openhermes2_5.jsonl
|
82 |
-
type: sharegpt
|
83 |
-
- path: /workspace/input/datasets/qa_tune/cosmology_textbooks_qa.jsonl
|
84 |
-
type: alpaca_chat.load_qa
|
85 |
-
- path: /workspace/input/datasets/qa_tune/physics_astro_qa.jsonl
|
86 |
-
type: alpaca_chat.load_qa
|
87 |
-
|
88 |
-
dataset_prepared_path: /workspace/output/qa_tune_prepared
|
89 |
-
val_set_size: 0.001
|
90 |
-
output_dir: /workspace/output/cosmosage_qa
|
91 |
-
|
92 |
-
chat_template: inst
|
93 |
-
|
94 |
-
adapter:
|
95 |
-
lora_model_dir:
|
96 |
-
|
97 |
-
sequence_len: 4096
|
98 |
-
sample_packing: true
|
99 |
-
pad_to_sequence_len: true
|
100 |
-
|
101 |
-
lora_r:
|
102 |
-
lora_alpha:
|
103 |
-
lora_dropout:
|
104 |
-
lora_target_modules:
|
105 |
-
lora_target_linear:
|
106 |
-
lora_fan_in_fan_out:
|
107 |
-
|
108 |
-
seed: 702
|
109 |
-
|
110 |
-
wandb_project:
|
111 |
-
wandb_entity:
|
112 |
-
wandb_watch:
|
113 |
-
wandb_name:
|
114 |
-
wandb_log_model:
|
115 |
-
|
116 |
-
gradient_accumulation_steps: 1
|
117 |
-
micro_batch_size: 4
|
118 |
-
num_epochs: 2.0
|
119 |
-
optimizer: adamw_torch
|
120 |
-
lr_scheduler: linear
|
121 |
-
learning_rate: 0.000002
|
122 |
-
max_grad_norm: 3.0
|
123 |
-
|
124 |
-
train_on_inputs: false
|
125 |
-
group_by_length: false
|
126 |
-
bf16: true
|
127 |
-
fp16: false
|
128 |
-
tf32: false
|
129 |
-
|
130 |
-
gradient_checkpointing: true
|
131 |
-
early_stopping_patience:
|
132 |
-
resume_from_checkpoint:
|
133 |
-
local_rank:
|
134 |
-
logging_steps: 1
|
135 |
-
xformers_attention:
|
136 |
-
flash_attention: true
|
137 |
-
|
138 |
-
warmup_steps: 100
|
139 |
-
eval_steps: 0.05
|
140 |
-
eval_table_size:
|
141 |
-
eval_table_max_new_tokens: 128
|
142 |
-
saves_per_epoch: 1
|
143 |
-
save_total_limit: 2
|
144 |
-
debug:
|
145 |
-
deepspeed: /workspace/axolotl/deepspeed_configs/zero1.json
|
146 |
-
weight_decay:
|
147 |
-
fsdp:
|
148 |
-
fsdp_config:
|
149 |
-
special_tokens:
|
150 |
-
bos_token: "<s>"
|
151 |
-
eos_token: "</s>"
|
152 |
-
unk_token: "<unk>"
|
153 |
-
|
154 |
-
ddp_timeout: 7200000
|
155 |
-
|
156 |
-
```
|
157 |
|
158 |
-
</details><br>
|
159 |
|
160 |
-
### Training hyperparameters
|
161 |
|
162 |
-
The following hyperparameters were used during
|
163 |
- learning_rate: 2e-06
|
164 |
- train_batch_size: 4
|
165 |
- eval_batch_size: 4
|
@@ -171,37 +71,4 @@ The following hyperparameters were used during training:
|
|
171 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
172 |
- lr_scheduler_type: linear
|
173 |
- lr_scheduler_warmup_steps: 100
|
174 |
-
- num_epochs: 2.0
|
175 |
-
|
176 |
-
### Training results
|
177 |
-
|
178 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
179 |
-
|:-------------:|:-----:|:-----:|:---------------:|
|
180 |
-
| 1.1004 | 0.0 | 1 | 1.1450 |
|
181 |
-
| 0.7343 | 0.1 | 909 | 0.7093 |
|
182 |
-
| 0.697 | 0.2 | 1818 | 0.6630 |
|
183 |
-
| 0.6386 | 0.3 | 2727 | 0.6380 |
|
184 |
-
| 0.5687 | 0.4 | 3636 | 0.6212 |
|
185 |
-
| 0.5857 | 0.5 | 4545 | 0.6083 |
|
186 |
-
| 0.6161 | 0.6 | 5454 | 0.5986 |
|
187 |
-
| 0.522 | 0.7 | 6363 | 0.5894 |
|
188 |
-
| 0.5563 | 0.8 | 7272 | 0.5825 |
|
189 |
-
| 0.6176 | 0.9 | 8181 | 0.5766 |
|
190 |
-
| 0.5948 | 1.0 | 9090 | 0.5719 |
|
191 |
-
| 0.4269 | 1.08 | 9999 | 0.5817 |
|
192 |
-
| 0.4858 | 1.18 | 10908 | 0.5796 |
|
193 |
-
| 0.4909 | 1.28 | 11817 | 0.5765 |
|
194 |
-
| 0.4325 | 1.38 | 12726 | 0.5746 |
|
195 |
-
| 0.4037 | 1.48 | 13635 | 0.5720 |
|
196 |
-
| 0.507 | 1.58 | 14544 | 0.5706 |
|
197 |
-
| 0.4778 | 1.68 | 15453 | 0.5697 |
|
198 |
-
| 0.4599 | 1.78 | 16362 | 0.5683 |
|
199 |
-
| 0.4515 | 1.88 | 17271 | 0.5673 |
|
200 |
-
|
201 |
-
|
202 |
-
### Framework versions
|
203 |
-
|
204 |
-
- Transformers 4.38.0.dev0
|
205 |
-
- Pytorch 2.0.1+cu118
|
206 |
-
- Datasets 2.17.0
|
207 |
-
- Tokenizers 0.15.0
|
|
|
55 |
_reliability_. While many of its answers are factually accurate, some are not. The outputs of cosmosage
|
56 |
(or any LLM) should not be trusted to be factual.
|
57 |
|
58 |
+
### Training hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
|
|
|
61 |
|
62 |
+
The following hyperparameters were used during QA tuning:
|
63 |
- learning_rate: 2e-06
|
64 |
- train_batch_size: 4
|
65 |
- eval_batch_size: 4
|
|
|
71 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
- lr_scheduler_type: linear
|
73 |
- lr_scheduler_warmup_steps: 100
|
74 |
+
- num_epochs: 2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|