Tianmu28's picture
SegFormer-model-flood-images
5b2f813 verified
metadata
library_name: transformers
license: other
base_model: nvidia/segformer-b0-finetuned-ade-512-512
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-segments-sidewalk-finetuned
    results: []

segformer-b0-segments-sidewalk-finetuned

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2634
  • Mean Iou: 0.4383
  • Mean Accuracy: 0.8765
  • Overall Accuracy: 0.8765
  • Accuracy Background: nan
  • Accuracy Target: 0.8765
  • Iou Background: 0.0
  • Iou Target: 0.8765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Target Iou Background Iou Target
0.4747 1.0 26 0.3768 0.4287 0.8573 0.8573 nan 0.8573 0.0 0.8573
0.3193 2.0 52 0.3138 0.4198 0.8395 0.8395 nan 0.8395 0.0 0.8395
0.2792 3.0 78 0.2899 0.4318 0.8636 0.8636 nan 0.8636 0.0 0.8636
0.2569 4.0 104 0.2723 0.4202 0.8405 0.8405 nan 0.8405 0.0 0.8405
0.2504 5.0 130 0.2634 0.4383 0.8765 0.8765 nan 0.8765 0.0 0.8765
0.2294 6.0 156 0.2572 0.4292 0.8584 0.8584 nan 0.8584 0.0 0.8584
0.2337 7.0 182 0.2567 0.4292 0.8584 0.8584 nan 0.8584 0.0 0.8584
0.2255 8.0 208 0.2546 0.4354 0.8707 0.8707 nan 0.8707 0.0 0.8707
0.2213 9.0 234 0.2557 0.4299 0.8597 0.8597 nan 0.8597 0.0 0.8597
0.2203 10.0 260 0.2552 0.4372 0.8744 0.8744 nan 0.8744 0.0 0.8744

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3