Threatthriver
commited on
Commit
•
7caf55d
1
Parent(s):
142a022
Update README.md
Browse files
README.md
CHANGED
@@ -13,43 +13,78 @@ tags:
|
|
13 |
- finance
|
14 |
- chemistry
|
15 |
- biology
|
16 |
-
|
17 |
|
18 |
-
# threatthriver/Gemma-7B-LoRA-Fine-Tuned
|
19 |
|
20 |
## Description
|
21 |
|
22 |
-
This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset
|
23 |
|
24 |
**Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
|
25 |
|
26 |
## Model Fine-tuning Details
|
27 |
|
28 |
-
- **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
|
29 |
-
- **Fine-tuning
|
30 |
-
- **LoRA
|
31 |
-
- **Dataset:** [
|
32 |
-
- **Training
|
33 |
|
34 |
## How to Use
|
35 |
|
36 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
3. **Load Adapter Weights:** Load the `adapter_model.bin` and other relevant files from this repository to apply the fine-tuned adapter weights to the base Gemma model.
|
41 |
-
4. **Integration:** Integrate this custom loading process into your Hugging Face Transformers-based code.
|
42 |
|
43 |
-
**
|
|
|
|
|
|
|
44 |
|
45 |
```python
|
46 |
import keras_nlp
|
47 |
-
from transformers import GemmaTokenizerFast # Or appropriate tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
|
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
|
|
13 |
- finance
|
14 |
- chemistry
|
15 |
- biology
|
16 |
+
Certainly! Here's the complete README in Markdown format:
|
17 |
|
18 |
+
# threatthriver/Gemma-7B-LoRA-Fine-Tuned
|
19 |
|
20 |
## Description
|
21 |
|
22 |
+
This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset.
|
23 |
|
24 |
**Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
|
25 |
|
26 |
## Model Fine-tuning Details
|
27 |
|
28 |
+
- **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
|
29 |
+
- **Fine-tuning Method:** LoRA ([Low-Rank Adaptation](https://arxiv.org/abs/2106.09685))
|
30 |
+
- **LoRA Rank:** 8
|
31 |
+
- **Dataset:** [Describe your dataset here, including its source, size, and any notable features. If possible, provide a link to the dataset or its description.]
|
32 |
+
- **Training Framework:** KerasNLP
|
33 |
|
34 |
## How to Use
|
35 |
|
36 |
+
This release is not directly compatible with the `transformers` library's standard loading methods. You will need to:
|
37 |
+
|
38 |
+
1. **Load the Base Gemma Model:**
|
39 |
+
Use KerasNLP to load the `google/gemma2_9b_en` base model. Make sure you have the KerasNLP library installed and properly configured.
|
40 |
+
|
41 |
+
2. **Enable LoRA:**
|
42 |
+
Utilize KerasNLP’s LoRA functionality to enable adapters on the appropriate layers of the Gemma model. Refer to the [KerasNLP LoRA documentation](https://keras.io/guides/transformers/#low-rank-adaptation-lora) for implementation details.
|
43 |
|
44 |
+
3. **Load Adapter Weights:**
|
45 |
+
Load the `adapter_model.bin` and other relevant files from this repository. The `config.json` file provides essential configurations for applying the LoRA adapter weights.
|
|
|
|
|
46 |
|
47 |
+
4. **Integration:**
|
48 |
+
Integrate this custom loading process into your Hugging Face Transformers-based code. Ensure you handle the merging of adapter weights with the base model appropriately.
|
49 |
+
|
50 |
+
## Example Code Structure (Conceptual):
|
51 |
|
52 |
```python
|
53 |
import keras_nlp
|
54 |
+
from transformers import GemmaTokenizerFast # Or the appropriate tokenizer from KerasNLP
|
55 |
+
|
56 |
+
# Load the base Gemma model using KerasNLP
|
57 |
+
base_model = keras_nlp.models.Gemma.from_pretrained('google/gemma2_9b_en')
|
58 |
+
|
59 |
+
# Enable LoRA adapters on target layers
|
60 |
+
# Assuming you have a function to enable LoRA, e.g., enable_lora(model, rank)
|
61 |
+
enable_lora(base_model, rank=8)
|
62 |
+
|
63 |
+
# Load adapter weights from this repository
|
64 |
+
# Assuming you have a function to load the weights, e.g., load_lora_weights(model, weights_path)
|
65 |
+
adapter_weights_path = 'path_to_your_adapter_weights/adapter_model.bin'
|
66 |
+
load_lora_weights(base_model, adapter_weights_path)
|
67 |
+
|
68 |
+
# Initialize tokenizer
|
69 |
+
tokenizer = GemmaTokenizerFast.from_pretrained('google/gemma2_9b_en')
|
70 |
+
|
71 |
+
# Use the tokenizer and model for generation or other tasks
|
72 |
+
inputs = tokenizer("Your input text", return_tensors="pt")
|
73 |
+
outputs = base_model.generate(**inputs)
|
74 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
75 |
+
```
|
76 |
+
|
77 |
+
## Requirements
|
78 |
+
|
79 |
+
- **KerasNLP:** Install using `pip install keras-nlp`
|
80 |
+
- **Transformers:** Install using `pip install transformers`
|
81 |
+
- **Other Dependencies:** Ensure all dependencies required for KerasNLP and Hugging Face Transformers are installed.
|
82 |
|
83 |
+
## Notes
|
84 |
|
85 |
+
- Ensure you have the correct versions of KerasNLP and Transformers compatible with each other.
|
86 |
+
- Custom code for loading and applying LoRA adapters may require adjustments based on your specific use case and the versions of libraries used.
|
87 |
|
88 |
+
## License
|
89 |
|
90 |
+
This project is licensed under the [MIT License](LICENSE).
|