Threatthriver commited on
Commit
7caf55d
1 Parent(s): 142a022

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -19
README.md CHANGED
@@ -13,43 +13,78 @@ tags:
13
  - finance
14
  - chemistry
15
  - biology
16
- ---
17
 
18
- # threatthriver/Gemma-7B-LoRA-Fine-Tuned
19
 
20
  ## Description
21
 
22
- This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset of [**briefly describe your dataset**].
23
 
24
  **Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
25
 
26
  ## Model Fine-tuning Details
27
 
28
- - **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
29
- - **Fine-tuning method:** LoRA ([https://arxiv.org/abs/2106.09685](https://arxiv.org/abs/2106.09685))
30
- - **LoRA rank:** 8
31
- - **Dataset:** [**Briefly describe your dataset and provide a link if possible**]
32
- - **Training framework:** KerasNLP
33
 
34
  ## How to Use
35
 
36
- This model release is not directly compatible with the `transformers` library's standard loading methods. You will need to:
 
 
 
 
 
 
37
 
38
- 1. **Load the Base Gemma Model:** Use KerasNLP to load the `google/gemma2_9b_en` base model.
39
- 2. **Enable LoRA:** Use KerasNLP's LoRA functionality to enable adapters on the appropriate layers of the Gemma model.
40
- 3. **Load Adapter Weights:** Load the `adapter_model.bin` and other relevant files from this repository to apply the fine-tuned adapter weights to the base Gemma model.
41
- 4. **Integration:** Integrate this custom loading process into your Hugging Face Transformers-based code.
42
 
43
- **Example Code Structure (Conceptual):**
 
 
 
44
 
45
  ```python
46
  import keras_nlp
47
- from transformers import GemmaTokenizerFast # Or appropriate tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
- # ... Load base Gemma model using KerasNLP ...
50
 
51
- # ... Enable LoRA adapters on target layers ...
 
52
 
53
- # ... Load adapter weights from this repository ...
54
 
55
- # ... Use tokenizer, model for generation or other tasks ...
 
13
  - finance
14
  - chemistry
15
  - biology
16
+ Certainly! Here's the complete README in Markdown format:
17
 
18
+ # threatthriver/Gemma-7B-LoRA-Fine-Tuned
19
 
20
  ## Description
21
 
22
+ This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset.
23
 
24
  **Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
25
 
26
  ## Model Fine-tuning Details
27
 
28
+ - **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
29
+ - **Fine-tuning Method:** LoRA ([Low-Rank Adaptation](https://arxiv.org/abs/2106.09685))
30
+ - **LoRA Rank:** 8
31
+ - **Dataset:** [Describe your dataset here, including its source, size, and any notable features. If possible, provide a link to the dataset or its description.]
32
+ - **Training Framework:** KerasNLP
33
 
34
  ## How to Use
35
 
36
+ This release is not directly compatible with the `transformers` library's standard loading methods. You will need to:
37
+
38
+ 1. **Load the Base Gemma Model:**
39
+ Use KerasNLP to load the `google/gemma2_9b_en` base model. Make sure you have the KerasNLP library installed and properly configured.
40
+
41
+ 2. **Enable LoRA:**
42
+ Utilize KerasNLP’s LoRA functionality to enable adapters on the appropriate layers of the Gemma model. Refer to the [KerasNLP LoRA documentation](https://keras.io/guides/transformers/#low-rank-adaptation-lora) for implementation details.
43
 
44
+ 3. **Load Adapter Weights:**
45
+ Load the `adapter_model.bin` and other relevant files from this repository. The `config.json` file provides essential configurations for applying the LoRA adapter weights.
 
 
46
 
47
+ 4. **Integration:**
48
+ Integrate this custom loading process into your Hugging Face Transformers-based code. Ensure you handle the merging of adapter weights with the base model appropriately.
49
+
50
+ ## Example Code Structure (Conceptual):
51
 
52
  ```python
53
  import keras_nlp
54
+ from transformers import GemmaTokenizerFast # Or the appropriate tokenizer from KerasNLP
55
+
56
+ # Load the base Gemma model using KerasNLP
57
+ base_model = keras_nlp.models.Gemma.from_pretrained('google/gemma2_9b_en')
58
+
59
+ # Enable LoRA adapters on target layers
60
+ # Assuming you have a function to enable LoRA, e.g., enable_lora(model, rank)
61
+ enable_lora(base_model, rank=8)
62
+
63
+ # Load adapter weights from this repository
64
+ # Assuming you have a function to load the weights, e.g., load_lora_weights(model, weights_path)
65
+ adapter_weights_path = 'path_to_your_adapter_weights/adapter_model.bin'
66
+ load_lora_weights(base_model, adapter_weights_path)
67
+
68
+ # Initialize tokenizer
69
+ tokenizer = GemmaTokenizerFast.from_pretrained('google/gemma2_9b_en')
70
+
71
+ # Use the tokenizer and model for generation or other tasks
72
+ inputs = tokenizer("Your input text", return_tensors="pt")
73
+ outputs = base_model.generate(**inputs)
74
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
+ ```
76
+
77
+ ## Requirements
78
+
79
+ - **KerasNLP:** Install using `pip install keras-nlp`
80
+ - **Transformers:** Install using `pip install transformers`
81
+ - **Other Dependencies:** Ensure all dependencies required for KerasNLP and Hugging Face Transformers are installed.
82
 
83
+ ## Notes
84
 
85
+ - Ensure you have the correct versions of KerasNLP and Transformers compatible with each other.
86
+ - Custom code for loading and applying LoRA adapters may require adjustments based on your specific use case and the versions of libraries used.
87
 
88
+ ## License
89
 
90
+ This project is licensed under the [MIT License](LICENSE).