|
--- |
|
tags: |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
--- |
|
# ppo-Walker2DBulletEnv-v0 |
|
|
|
This is a pre-trained model of a PPO agent playing AntBulletEnv-v0 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. |
|
|
|
### Usage (with Stable-baselines3) |
|
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: |
|
``` |
|
pip install stable-baselines3 |
|
pip install huggingface_sb3 |
|
``` |
|
|
|
Then, you can use the model like this: |
|
|
|
```python |
|
|
|
import gym |
|
import pybullet_envs |
|
|
|
from huggingface_sb3 import load_from_hub |
|
|
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
# Retrieve the model from the hub |
|
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) |
|
## filename = name of the model zip file from the repository |
|
repo_id = "ThomasSimonini/ppo-AntBulletEnv-v0" |
|
checkpoint = load_from_hub(repo_id = repo_id, filename="ppo-AntBulletEnv-v0.zip") |
|
model = PPO.load(checkpoint) |
|
|
|
# Load the saved statistics |
|
stats_path = load_from_hub(repo_id = repo_id, filename="vec_normalize.pkl") |
|
|
|
eval_env = DummyVecEnv([lambda: gym.make("AntBulletEnv-v0")]) |
|
eval_env = VecNormalize.load(stats_path, eval_env) |
|
# do not update them at test time |
|
eval_env.training = False |
|
# reward normalization is not needed at test time |
|
eval_env.norm_reward = False |
|
|
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
|
|
mean_reward, std_reward = evaluate_policy(model, eval_env) |
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
|
|
``` |
|
|
|
### Evaluation Results |
|
Mean_reward: 3547.01 +/- 33.32 |
|
|