ThomasBaruzier commited on
Commit
0e3f8cb
1 Parent(s): 0ce0b11

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -0
README.md CHANGED
@@ -189,6 +189,21 @@ extra_gated_description: The information you provide will be collected, stored,
189
  extra_gated_button_content: Submit
190
  ---
191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  ## Model Information
193
 
194
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
 
189
  extra_gated_button_content: Submit
190
  ---
191
 
192
+ <hr>
193
+
194
+ # Llama.cpp imatrix quantizations of meta-llama/Meta-Llama-3-405B-Instruct
195
+
196
+ <!-- Better pic but I would like to talk about my quants on Linkedin so yeah <img src="https://cdn-uploads.huggingface.co/production/uploads/646410e04bf9122922289dc7/xlkSJli8IQ9KoTAuTKOF2.png" alt="llama" width="30%"/> -->
197
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/646410e04bf9122922289dc7/LQUL7YII8okA8CG54mQSI.jpeg" alt="llama" width="60%"/>
198
+
199
+ Using llama.cpp commit [b5e9546](https://github.com/ggerganov/llama.cpp/commit/b5e95468b1676e1e5c9d80d1eeeb26f542a38f42) for quantization.
200
+
201
+ Original model: https://huggingface.co/meta-llama/Meta-Llama-3-405B-Instruct
202
+
203
+ All quants were made using the imatrix option and Bartowski's [calibration file](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8).
204
+
205
+ <hr><br>
206
+
207
  ## Model Information
208
 
209
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.