wav2vec2-vivos / README.md
Thienpkae's picture
Upload tokenizer
a4cc134 verified
metadata
base_model: facebook/wav2vec2-base
datasets:
  - vivos
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-vivos
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 0.2342930262316059
            name: Wer

wav2vec2-vivos

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4598
  • Wer: 0.2343

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.8271 2.0 146 3.8747 1.0
3.4616 4.0 292 3.5849 1.0
3.35 6.0 438 2.6294 0.9997
1.1993 8.0 584 0.6472 0.4255
0.4734 10.0 730 0.5342 0.3258
0.3156 12.0 876 0.4651 0.2758
0.2392 14.0 1022 0.4690 0.2573
0.2183 16.0 1168 0.4601 0.2434
0.164 18.0 1314 0.4619 0.2379
0.1452 20.0 1460 0.4598 0.2343

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1