Theoreticallyhugo
commited on
Commit
•
3123a57
1
Parent(s):
9c4f086
trainer: training complete at 2023-11-27 17:15:50.390304.
Browse files- README.md +16 -16
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -17,17 +17,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- B-claim: {'precision': 0.
|
22 |
-
- B-majorclaim: {'precision': 0.
|
23 |
-
- B-premise: {'precision': 0.
|
24 |
-
- I-claim: {'precision': 0.
|
25 |
-
- I-majorclaim: {'precision': 0.
|
26 |
-
- I-premise: {'precision': 0.
|
27 |
-
- O: {'precision': 0.
|
28 |
-
- Accuracy: 0.
|
29 |
-
- Macro avg: {'precision': 0.
|
30 |
-
- Weighted avg: {'precision': 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -56,11 +56,11 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch | Step | Validation Loss | B-claim
|
60 |
-
|
61 |
-
| No log | 1.0 |
|
62 |
-
| No log | 2.0 |
|
63 |
-
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6204
|
21 |
+
- B-claim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 147.0}
|
22 |
+
- B-majorclaim: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 77.0}
|
23 |
+
- B-premise: {'precision': 0.6069364161849711, 'recall': 0.5526315789473685, 'f1-score': 0.5785123966942148, 'support': 380.0}
|
24 |
+
- I-claim: {'precision': 0.5083841463414634, 'recall': 0.3100883310088331, 'f1-score': 0.3852151313889692, 'support': 2151.0}
|
25 |
+
- I-majorclaim: {'precision': 0.4941275167785235, 'recall': 0.562559694364852, 'f1-score': 0.5261277355962484, 'support': 1047.0}
|
26 |
+
- I-premise: {'precision': 0.8047369129323106, 'recall': 0.9100593516968498, 'f1-score': 0.8541636909012997, 'support': 6571.0}
|
27 |
+
- O: {'precision': 0.854797733046707, 'recall': 0.8704477611940299, 'f1-score': 0.862551764937882, 'support': 5025.0}
|
28 |
+
- Accuracy: 0.7676
|
29 |
+
- Macro avg: {'precision': 0.46699753218342505, 'recall': 0.45796953103027616, 'f1-score': 0.45808153135980195, 'support': 15398.0}
|
30 |
+
- Weighted avg: {'precision': 0.7419669119649179, 'recall': 0.7676321600207819, 'f1-score': 0.74985845104923, 'support': 15398.0}
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------:|:-------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:----------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
61 |
+
| No log | 1.0 | 36 | 0.8375 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 147.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 77.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 380.0} | {'precision': 0.3307174887892377, 'recall': 0.13714551371455136, 'f1-score': 0.1938876109102859, 'support': 2151.0} | {'precision': 0.25, 'recall': 0.0009551098376313276, 'f1-score': 0.0019029495718363464, 'support': 1047.0} | {'precision': 0.6899198931909212, 'recall': 0.9436919799117334, 'f1-score': 0.7970949289800116, 'support': 6571.0} | {'precision': 0.7767500906782735, 'recall': 0.8523383084577114, 'f1-score': 0.8127905873422525, 'support': 5025.0} | 0.7001 | {'precision': 0.29248392466549034, 'recall': 0.2763044159888039, 'f1-score': 0.25795372525776944, 'support': 15398.0} | {'precision': 0.6111024900767319, 'recall': 0.7000909208988181, 'f1-score': 0.6326164514217569, 'support': 15398.0} |
|
62 |
+
| No log | 2.0 | 72 | 0.6930 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 147.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 77.0} | {'precision': 0.6489795918367347, 'recall': 0.41842105263157897, 'f1-score': 0.5087999999999999, 'support': 380.0} | {'precision': 0.4376956793988729, 'recall': 0.32496513249651326, 'f1-score': 0.37299893276414087, 'support': 2151.0} | {'precision': 0.3946384039900249, 'recall': 0.6045845272206304, 'f1-score': 0.47755563938136547, 'support': 1047.0} | {'precision': 0.83792191631669, 'recall': 0.8198143357175468, 'f1-score': 0.8287692307692307, 'support': 6571.0} | {'precision': 0.8073510773130546, 'recall': 0.887363184079602, 'f1-score': 0.8454683352294274, 'support': 5025.0} | 0.7363 | {'precision': 0.446655238407911, 'recall': 0.4364497474494102, 'f1-score': 0.4333703054491663, 'support': 15398.0} | {'precision': 0.7250426117598104, 'recall': 0.7362644499285621, 'f1-score': 0.7267168761345917, 'support': 15398.0} |
|
63 |
+
| No log | 3.0 | 108 | 0.6204 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 147.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 77.0} | {'precision': 0.6069364161849711, 'recall': 0.5526315789473685, 'f1-score': 0.5785123966942148, 'support': 380.0} | {'precision': 0.5083841463414634, 'recall': 0.3100883310088331, 'f1-score': 0.3852151313889692, 'support': 2151.0} | {'precision': 0.4941275167785235, 'recall': 0.562559694364852, 'f1-score': 0.5261277355962484, 'support': 1047.0} | {'precision': 0.8047369129323106, 'recall': 0.9100593516968498, 'f1-score': 0.8541636909012997, 'support': 6571.0} | {'precision': 0.854797733046707, 'recall': 0.8704477611940299, 'f1-score': 0.862551764937882, 'support': 5025.0} | 0.7676 | {'precision': 0.46699753218342505, 'recall': 0.45796953103027616, 'f1-score': 0.45808153135980195, 'support': 15398.0} | {'precision': 0.7419669119649179, 'recall': 0.7676321600207819, 'f1-score': 0.74985845104923, 'support': 15398.0} |
|
64 |
|
65 |
|
66 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 592391625
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42c83f9d5a3849bcee5c520759004034a0c29260874931458956f7339131020f
|
3 |
size 592391625
|