metadata
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Tiny Ko - TJ
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Google Fleures
type: google/fleurs
config: clean
split: None
args: 'config:ko, split: test'
metrics:
- name: Wer
type: wer
value: 233.42796309439316
Whisper Tiny Ko - TJ
This model is a fine-tuned version of openai/whisper-tiny on the Google Fleures dataset. It achieves the following results on the evaluation set:
- Loss: 0.6558
- Wer: 233.4280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1157 | 6.29 | 1000 | 0.5599 | 58.7828 |
0.0174 | 12.58 | 2000 | 0.6095 | 143.0979 |
0.0072 | 18.87 | 3000 | 0.6457 | 214.4074 |
0.005 | 25.16 | 4000 | 0.6558 | 233.4280 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2