Thecoder3281f's picture
End of training
55dc60f verified
metadata
library_name: peft
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mesolitica/IMDA-TTS
metrics:
  - wer
model-index:
  - name: Whisper Small NSC small (1000 steps) - Jarrett Er
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: NSC Small section
          type: mesolitica/IMDA-TTS
          config: default
          split: train
          args: 'config: en, split: train'
        metrics:
          - type: wer
            value: 3.123272526257601
            name: Wer

Whisper Small NSC small (1000 steps) - Jarrett Er

This model is a fine-tuned version of Thecoder3281f/whisper-small-hi-commonvoice17-1000 on the NSC Small section dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0676
  • Wer: 3.1233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0806 0.2941 100 0.0737 3.4549
0.0618 0.5882 200 0.0690 3.2062
0.0689 0.8824 300 0.0655 3.0265
0.0385 1.1765 400 0.0652 3.1509
0.0441 1.4706 500 0.0653 3.1647
0.0389 1.7647 600 0.0652 3.0404
0.032 2.0588 700 0.0646 3.1786
0.0264 2.3529 800 0.0672 3.1095
0.0307 2.6471 900 0.0672 3.1647
0.0266 2.9412 1000 0.0676 3.1233

Framework versions

  • PEFT 0.14.0
  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.1.dev0
  • Tokenizers 0.20.3