|
--- |
|
inference: false |
|
license: other |
|
--- |
|
|
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
|
|
# WizardLM's WizardLM 30B v1.0 GGML |
|
|
|
These files are GGML format model files for [WizardLM's WizardLM 30B v1.0](https://huggingface.co/WizardLM/WizardLM-30B-V1.0). |
|
|
|
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) |
|
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) |
|
* [ctransformers](https://github.com/marella/ctransformers) |
|
|
|
## Repositories available |
|
|
|
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-30B-GPTQ) |
|
* [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-30B-GGML) |
|
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/WizardLM-30B-fp16) |
|
|
|
## Prompt template |
|
|
|
``` |
|
A chat between a curious user and an artificial intelligence assistant. |
|
The assistant gives helpful, detailed, and polite answers to the user's questions. |
|
USER: prompt goes here |
|
ASSISTANT: |
|
``` |
|
|
|
<!-- compatibility_ggml start --> |
|
## Compatibility |
|
|
|
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` |
|
|
|
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. |
|
|
|
They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README. |
|
|
|
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` |
|
|
|
These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`. |
|
|
|
They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days. |
|
|
|
## Explanation of the new k-quant methods |
|
|
|
The new methods available are: |
|
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) |
|
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. |
|
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. |
|
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw |
|
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw |
|
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. |
|
|
|
Refer to the Provided Files table below to see what files use which methods, and how. |
|
<!-- compatibility_ggml end --> |
|
|
|
## Provided files |
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| wizardlm-30b.ggmlv3.q2_K.bin | q2_K | 2 | 13.60 GB | 16.10 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | |
|
| wizardlm-30b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.20 GB | 19.70 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | |
|
| wizardlm-30b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.64 GB | 18.14 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | |
|
| wizardlm-30b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 13.98 GB | 16.48 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | |
|
| wizardlm-30b.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. | |
|
| wizardlm-30b.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | |
|
| wizardlm-30b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.57 GB | 22.07 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | |
|
| wizardlm-30b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.30 GB | 20.80 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | |
|
| wizardlm-30b.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | |
|
| wizardlm-30b.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | |
|
| wizardlm-30b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.02 GB | 25.52 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | |
|
| wizardlm-30b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.37 GB | 24.87 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | |
|
| wizardlm-30b.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | |
|
| wizardlm-30b.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | |
|
|
|
|
|
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. |
|
|
|
## How to run in `llama.cpp` |
|
|
|
I use the following command line; adjust for your tastes and needs: |
|
|
|
``` |
|
./main -t 10 -ngl 32 -m wizardlm-30b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" |
|
``` |
|
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. |
|
|
|
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. |
|
|
|
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` |
|
|
|
## How to run in `text-generation-webui` |
|
|
|
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. |
|
|
|
**Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: WizardLM's WizardLM 30B v1.0 |
|
|
|
This is WizardLM-30B V1.0 delta weight. |
|
|
|
Project Repo: https://github.com/nlpxucan/WizardLM |
|
|
|
|
|
NOTE: The **WizardLM-30B-V1.0** & **WizardLM-13B-V1.0** use different prompt with **Wizard-7B-V1.0** at the beginning of the conversation: |
|
|
|
1. For **WizardLM-30B-V1.0** & **WizardLM-13B-V1.0** , the Prompt should be as following: |
|
|
|
"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: hello, who are you? ASSISTANT:" |
|
|
|
|
|
2. For **WizardLM-7B-V1.0** , the Prompt should be as following: |
|
|
|
"{instruction}\n\n### Response:" |
|
|