|
--- |
|
inference: false |
|
license: other |
|
tags: |
|
- medical |
|
datasets: |
|
- allenai/s2orc |
|
--- |
|
|
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
|
|
# Chaoyi Wi's PMC_LLAMA 7B GGML |
|
|
|
These files are GGML format model files for [Chaoyi Wi's PMC_LLAMA 7B](https://huggingface.co/chaoyi-wu/PMC_LLAMA_7B). |
|
|
|
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) |
|
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) |
|
* [ctransformers](https://github.com/marella/ctransformers) |
|
|
|
## Repositories available |
|
|
|
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/PMC_LLAMA-7B-GPTQ) |
|
* [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/PMC_LLAMA-7B-GGML) |
|
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/chaoyi-wu/PMC_LLAMA_7B) |
|
|
|
## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)! |
|
|
|
llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508 |
|
|
|
I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them. |
|
|
|
## Provided files |
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| PMC_LLAMA-7B.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | 4-bit. | |
|
| PMC_LLAMA-7B.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | |
|
| PMC_LLAMA-7B.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | 5-bit. Higher accuracy, higher resource usage and slower inference. | |
|
| PMC_LLAMA-7B.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | 5-bit. Even higher accuracy, resource usage and slower inference. | |
|
| PMC_LLAMA-7B.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. | |
|
|
|
|
|
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. |
|
|
|
## How to run in `llama.cpp` |
|
|
|
I use the following command line; adjust for your tastes and needs: |
|
|
|
``` |
|
./main -t 10 -ngl 32 -m PMC_LLAMA-7B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" |
|
``` |
|
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. |
|
|
|
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. |
|
|
|
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` |
|
|
|
## How to run in `text-generation-webui` |
|
|
|
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
<!-- footer end --> |
|
|
|
# Original model card: Chaoyi Wi's PMC_LLAMA 7B |
|
|
|
This repo contains PMC_LLaMA_7B, which is LLaMA-7b finetuned on the PMC papers in S2ORC dataset. |
|
|
|
The model was trained with the following hyperparameters: |
|
|
|
* Epochs: 5 |
|
* Batch size: 128 |
|
* Cutoff length: 512 |
|
* Learning rate: 2e-5 |
|
|
|
Each epoch we sample 512 tokens per paper for training. |
|
|
|
The model can be loaded as following: |
|
|
|
``` |
|
import transformers |
|
import torch |
|
tokenizer = transformers.LlamaTokenizer.from_pretrained('chaoyi-wu/PMC_LLAMA_7B') |
|
model = transformers.LlamaForCausalLM.from_pretrained('chaoyi-wu/PMC_LLAMA_7B') |
|
sentence = 'Hello, doctor' |
|
batch = tokenizer( |
|
sentence, |
|
return_tensors="pt", |
|
add_special_tokens=False |
|
) |
|
with torch.no_grad(): |
|
generated = model.generate(inputs = batch["input_ids"], max_length=200, do_sample=True, top_k=50) |
|
print('model predict: ',tokenizer.decode(generated[0])) |
|
``` |
|
|