Text Generation
Transformers
English
TheBloke commited on
Commit
2853859
·
1 Parent(s): 37f07a9

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +14 -1
README.md CHANGED
@@ -86,7 +86,20 @@ Refer to the Provided Files table below to see what files use which methods, and
86
  ## Provided files
87
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
88
  | ---- | ---- | ---- | ---- | ---- | ----- |
89
-
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
92
 
 
86
  ## Provided files
87
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
88
  | ---- | ---- | ---- | ---- | ---- | ----- |
89
+ | openorca-preview1-200k-llama-13b.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB| 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
90
+ | openorca-preview1-200k-llama-13b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB| 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
91
+ | openorca-preview1-200k-llama-13b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB| 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
92
+ | openorca-preview1-200k-llama-13b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB| 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
93
+ | openorca-preview1-200k-llama-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
94
+ | openorca-preview1-200k-llama-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
95
+ | openorca-preview1-200k-llama-13b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB| 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
96
+ | openorca-preview1-200k-llama-13b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB| 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
97
+ | openorca-preview1-200k-llama-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
98
+ | openorca-preview1-200k-llama-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
99
+ | openorca-preview1-200k-llama-13b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB| 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
100
+ | openorca-preview1-200k-llama-13b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB| 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
101
+ | openorca-preview1-200k-llama-13b.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB| 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
102
+ | openorca-preview1-200k-llama-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
103
 
104
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
105