TheBloke commited on
Commit
82e6d27
·
1 Parent(s): 9fe896d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -22
README.md CHANGED
@@ -43,19 +43,17 @@ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is
43
 
44
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
45
 
46
- As of August 25th, here is a list of clients and libraries that are known to support GGUF:
47
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
48
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
49
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
50
- * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
51
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
52
- * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
53
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
54
- * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
55
-
56
- The clients and libraries below are expecting to add GGUF support shortly:
57
- <!-- README_GGUF.md-about-gguf end -->
58
 
 
59
  <!-- repositories-available start -->
60
  ## Repositories available
61
 
@@ -80,9 +78,7 @@ A chat between a curious user and an artificial intelligence assistant. The assi
80
 
81
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
82
 
83
- As of August 24th 2023 they are now compatible with KoboldCpp, release 1.41 and later.
84
-
85
- They are are not yet compatible with any other third-party UIS, libraries or utilities but this is expected to change very soon.
86
 
87
  ## Explanation of quantisation methods
88
  <details>
@@ -118,19 +114,22 @@ Refer to the Provided Files table below to see what files use which methods, and
118
  | [kimiko-v2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Kimiko-v2-13B-GGUF/blob/main/kimiko-v2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
119
 
120
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
 
 
 
121
  <!-- README_GGUF.md-provided-files end -->
122
 
123
  <!-- README_GGUF.md-how-to-run start -->
124
- ## How to run in `llama.cpp`
125
 
126
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
127
 
128
- For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
129
 
130
  ```
131
- ./main -t 10 -ngl 32 -m kimiko-v2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Write a story about llamas ASSISTANT:"
132
  ```
133
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
134
 
135
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
136
 
@@ -143,6 +142,44 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
143
  ## How to run in `text-generation-webui`
144
 
145
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  <!-- README_GGUF.md-how-to-run end -->
147
 
148
  <!-- footer start -->
@@ -168,7 +205,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
168
 
169
  **Special thanks to**: Aemon Algiz.
170
 
171
- **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
172
 
173
 
174
  Thank you to all my generous patrons and donaters!
@@ -181,6 +218,8 @@ And thank you again to a16z for their generous grant.
181
  # Original model card: nRuaif's Kimiko v2 13B
182
 
183
 
 
 
184
 
185
  ## Model Details
186
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
@@ -193,7 +232,7 @@ And thank you again to a16z for their generous grant.
193
 
194
  - **Developed by:** nRuaif
195
  - **Model type:** large language model
196
- - **License:**
197
  - **Finetuned from model [optional]:** Llama-13B
198
  ### Model Sources [optional]
199
 
@@ -237,9 +276,9 @@ Model might have bias to NSFW due to the large % of NSFW data in the training se
237
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
238
 
239
 
240
- 3000 convos with 4090 cut off len.
241
 
242
- ### Training Procedure
243
 
244
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
245
 
 
43
 
44
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
45
 
46
+ Here are a list of clients and libraries that are known to support GGUF:
47
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
48
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
49
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
50
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
51
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
52
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
53
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
54
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
 
 
 
55
 
56
+ <!-- README_GGUF.md-about-gguf end -->
57
  <!-- repositories-available start -->
58
  ## Repositories available
59
 
 
78
 
79
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
80
 
81
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
 
 
82
 
83
  ## Explanation of quantisation methods
84
  <details>
 
114
  | [kimiko-v2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Kimiko-v2-13B-GGUF/blob/main/kimiko-v2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
115
 
116
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
117
+
118
+
119
+
120
  <!-- README_GGUF.md-provided-files end -->
121
 
122
  <!-- README_GGUF.md-how-to-run start -->
123
+ ## Example `llama.cpp` command
124
 
125
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
126
 
127
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
128
 
129
  ```
130
+ ./main -t 10 -ngl 32 -m kimiko-v2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
131
  ```
132
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
133
 
134
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
135
 
 
142
  ## How to run in `text-generation-webui`
143
 
144
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
145
+
146
+ ## How to run from Python code
147
+
148
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
149
+
150
+ ### How to load this model from Python using ctransformers
151
+
152
+ #### First install the package
153
+
154
+ ```bash
155
+ # Base ctransformers with no GPU acceleration
156
+ pip install ctransformers>=0.2.24
157
+ # Or with CUDA GPU acceleration
158
+ pip install ctransformers[cuda]>=0.2.24
159
+ # Or with ROCm GPU acceleration
160
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
161
+ # Or with Metal GPU acceleration for macOS systems
162
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
163
+ ```
164
+
165
+ #### Simple example code to load one of these GGUF models
166
+
167
+ ```python
168
+ from ctransformers import AutoModelForCausalLM
169
+
170
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
171
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Kimiko-v2-13B-GGUF", model_file="kimiko-v2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
172
+
173
+ print(llm("AI is going to"))
174
+ ```
175
+
176
+ ## How to use with LangChain
177
+
178
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
179
+
180
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
181
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
182
+
183
  <!-- README_GGUF.md-how-to-run end -->
184
 
185
  <!-- footer start -->
 
205
 
206
  **Special thanks to**: Aemon Algiz.
207
 
208
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
209
 
210
 
211
  Thank you to all my generous patrons and donaters!
 
218
  # Original model card: nRuaif's Kimiko v2 13B
219
 
220
 
221
+ For llama-anon it is llama2 license
222
+
223
 
224
  ## Model Details
225
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
 
232
 
233
  - **Developed by:** nRuaif
234
  - **Model type:** large language model
235
+ - **License:**
236
  - **Finetuned from model [optional]:** Llama-13B
237
  ### Model Sources [optional]
238
 
 
276
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
277
 
278
 
279
+ 3000 convos with 4090 cut off len.
280
 
281
+ ### Training Procedure
282
 
283
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
284