TheBloke commited on
Commit
2137a61
·
1 Parent(s): 95dcf8d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -69,7 +69,7 @@ This repo contains GGUF format model files for [CalderaAI's 30B Epsilon](https:/
69
  <!-- README_GGUF.md-about-gguf start -->
70
  ### About GGUF
71
 
72
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
73
 
74
  Here is an incomplate list of clients and libraries that are known to support GGUF:
75
 
@@ -112,7 +112,7 @@ Below is an instruction that describes a task. Write a response that appropriate
112
  <!-- compatibility_gguf start -->
113
  ## Compatibility
114
 
115
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
116
 
117
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
118
 
@@ -176,7 +176,7 @@ Then click Download.
176
  I recommend using the `huggingface-hub` Python library:
177
 
178
  ```shell
179
- pip3 install huggingface-hub>=0.17.1
180
  ```
181
 
182
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -205,25 +205,25 @@ pip3 install hf_transfer
205
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
206
 
207
  ```shell
208
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/30B-Epsilon-GGUF 30b-epsilon.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
209
  ```
210
 
211
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
212
  </details>
213
  <!-- README_GGUF.md-how-to-download end -->
214
 
215
  <!-- README_GGUF.md-how-to-run start -->
216
  ## Example `llama.cpp` command
217
 
218
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
219
 
220
  ```shell
221
- ./main -ngl 32 -m 30b-epsilon.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
222
  ```
223
 
224
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
225
 
226
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
227
 
228
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
229
 
@@ -237,22 +237,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
237
 
238
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
239
 
240
- ### How to load this model from Python using ctransformers
241
 
242
  #### First install the package
243
 
244
- ```bash
 
 
245
  # Base ctransformers with no GPU acceleration
246
- pip install ctransformers>=0.2.24
247
  # Or with CUDA GPU acceleration
248
- pip install ctransformers[cuda]>=0.2.24
249
- # Or with ROCm GPU acceleration
250
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
251
- # Or with Metal GPU acceleration for macOS systems
252
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
253
  ```
254
 
255
- #### Simple example code to load one of these GGUF models
256
 
257
  ```python
258
  from ctransformers import AutoModelForCausalLM
@@ -265,7 +267,7 @@ print(llm("AI is going to"))
265
 
266
  ## How to use with LangChain
267
 
268
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
269
 
270
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
271
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
69
  <!-- README_GGUF.md-about-gguf start -->
70
  ### About GGUF
71
 
72
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
73
 
74
  Here is an incomplate list of clients and libraries that are known to support GGUF:
75
 
 
112
  <!-- compatibility_gguf start -->
113
  ## Compatibility
114
 
115
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
116
 
117
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
118
 
 
176
  I recommend using the `huggingface-hub` Python library:
177
 
178
  ```shell
179
+ pip3 install huggingface-hub
180
  ```
181
 
182
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
205
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
206
 
207
  ```shell
208
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/30B-Epsilon-GGUF 30b-epsilon.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
209
  ```
210
 
211
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
212
  </details>
213
  <!-- README_GGUF.md-how-to-download end -->
214
 
215
  <!-- README_GGUF.md-how-to-run start -->
216
  ## Example `llama.cpp` command
217
 
218
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
219
 
220
  ```shell
221
+ ./main -ngl 32 -m 30b-epsilon.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
222
  ```
223
 
224
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
225
 
226
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
227
 
228
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
229
 
 
237
 
238
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
239
 
240
+ ### How to load this model in Python code, using ctransformers
241
 
242
  #### First install the package
243
 
244
+ Run one of the following commands, according to your system:
245
+
246
+ ```shell
247
  # Base ctransformers with no GPU acceleration
248
+ pip install ctransformers
249
  # Or with CUDA GPU acceleration
250
+ pip install ctransformers[cuda]
251
+ # Or with AMD ROCm GPU acceleration (Linux only)
252
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
253
+ # Or with Metal GPU acceleration for macOS systems only
254
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
255
  ```
256
 
257
+ #### Simple ctransformers example code
258
 
259
  ```python
260
  from ctransformers import AutoModelForCausalLM
 
267
 
268
  ## How to use with LangChain
269
 
270
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
271
 
272
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
273
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)