ThatGuyVanquish's picture
update model card README.md
3e67f70
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- hebrew_news
metrics:
- rouge
model-index:
- name: mt5-small-news-final
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: hebrew_news
type: hebrew_news
config: hebrew_news
split: train
args: hebrew_news
metrics:
- name: Rouge1
type: rouge
value: 0.4946
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-news-final
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the hebrew_news dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.4946
- Rouge2: 0.0432
- Rougel: 0.4922
- Rougelsum: 0.4919
- Gen Len: 6.0117
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 1029 | nan | 0.4946 | 0.0432 | 0.4922 | 0.4919 | 6.0117 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.11.0