Upload processor
Browse files
image_processing_efficientnet.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 2 |
from timm import create_model
|
| 3 |
from timm.data import resolve_data_config
|
|
@@ -6,19 +10,54 @@ from timm.data.transforms_factory import create_transform
|
|
| 6 |
class EfficientNetImageProcessor(BaseImageProcessor):
|
| 7 |
model_input_names = ["pixel_values"]
|
| 8 |
|
| 9 |
-
def __init__(
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
self.model_name = model_name
|
| 16 |
self.config = resolve_data_config({}, model=create_model(model_name, pretrained=False))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
transforms = create_transform(**self.config)
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
return BatchFeature(data=data)
|
| 23 |
|
| 24 |
__all__ = [
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
from torch import Tensor, stack
|
| 3 |
+
from typing import Union, List
|
| 4 |
+
|
| 5 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 6 |
from timm import create_model
|
| 7 |
from timm.data import resolve_data_config
|
|
|
|
| 10 |
class EfficientNetImageProcessor(BaseImageProcessor):
|
| 11 |
model_input_names = ["pixel_values"]
|
| 12 |
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
model_name: str,
|
| 16 |
+
**kwargs,
|
| 17 |
+
):
|
|
|
|
| 18 |
self.model_name = model_name
|
| 19 |
self.config = resolve_data_config({}, model=create_model(model_name, pretrained=False))
|
| 20 |
+
super().__init__(**kwargs)
|
| 21 |
+
|
| 22 |
+
def preprocess(
|
| 23 |
+
self,
|
| 24 |
+
images: Union[List[Union[Image.Image, Tensor]], Image.Image, Tensor],
|
| 25 |
+
) -> BatchFeature:
|
| 26 |
+
"""
|
| 27 |
+
Preprocesses input images by applying transformations and returning them as a BatchFeature.
|
| 28 |
+
|
| 29 |
+
Parameters
|
| 30 |
+
----------
|
| 31 |
+
images : Union[List[PIL.Image.Image, torch.Tensor], PIL.Image.Image, torch.Tensor]
|
| 32 |
+
A single image or a list of images in one of the accepted formats.
|
| 33 |
+
|
| 34 |
+
Returns
|
| 35 |
+
-------
|
| 36 |
+
BatchFeature
|
| 37 |
+
A batch of transformed images
|
| 38 |
+
"""
|
| 39 |
+
images = [images] if not isinstance(images, list) else images
|
| 40 |
+
|
| 41 |
+
# TEST: empty list
|
| 42 |
+
if len(images) == 0:
|
| 43 |
+
raise ValueError("Received an empty list of images")
|
| 44 |
|
| 45 |
+
# TEST: validate input type
|
| 46 |
+
test_image = images[0]
|
| 47 |
+
if not isinstance(images[0], (Image.Image, Tensor)):
|
| 48 |
+
raise TypeError(
|
| 49 |
+
f"Expected image to be of type PIL.Image.Image, torch.Tensor, or numpy.ndarray, "
|
| 50 |
+
f"but got {type(test_image).__name__} instead."
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
# Apply transformations
|
| 54 |
transforms = create_transform(**self.config)
|
| 55 |
+
transformed_images = [transforms(image) for image in images]
|
| 56 |
+
|
| 57 |
+
# Convert to batch tensor
|
| 58 |
+
transformed_image_tensors = stack(transformed_images)
|
| 59 |
+
|
| 60 |
+
data = {'pixel_values': transformed_image_tensors}
|
| 61 |
return BatchFeature(data=data)
|
| 62 |
|
| 63 |
__all__ = [
|