Upload model
Browse files- config.json +2 -3
- configuration_efficientnet.py +12 -10
- model.safetensors +1 -1
- modeling_efficientnet.py +125 -51
config.json
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "./efficientnet/temp",
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "configuration_efficientnet.EfficientNetConfig",
|
| 8 |
-
"
|
| 9 |
},
|
| 10 |
"global_pool": "avg",
|
| 11 |
"model_name": "efficientnet_b1",
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
+
"EfficientNetModel"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
"AutoConfig": "configuration_efficientnet.EfficientNetConfig",
|
| 7 |
+
"AutoModel": "modeling_efficientnet.EfficientNetModel"
|
| 8 |
},
|
| 9 |
"global_pool": "avg",
|
| 10 |
"model_name": "efficientnet_b1",
|
configuration_efficientnet.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
|
| 3 |
-
from typing import Dict
|
| 4 |
|
| 5 |
MODEL_NAMES = [
|
| 6 |
'efficientnet_b0',
|
|
@@ -15,18 +16,18 @@ MODEL_NAMES = [
|
|
| 15 |
'efficientnet_l2'
|
| 16 |
]
|
| 17 |
|
|
|
|
| 18 |
class EfficientNetConfig(PretrainedConfig):
|
| 19 |
model_type = 'efficientnet'
|
| 20 |
|
| 21 |
def __init__(
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
if model_name not in MODEL_NAMES:
|
| 31 |
raise ValueError(f'`model_name` must be one of these: {MODEL_NAMES}, but got {model_name}')
|
| 32 |
|
|
@@ -34,9 +35,9 @@ class EfficientNetConfig(PretrainedConfig):
|
|
| 34 |
self.pretrained = pretrained
|
| 35 |
self.num_classes = num_classes
|
| 36 |
self.global_pool = global_pool
|
| 37 |
-
|
| 38 |
super().__init__(**kwargs)
|
| 39 |
|
|
|
|
| 40 |
class EfficientNetOnnxConfig(ViTOnnxConfig):
|
| 41 |
@property
|
| 42 |
def outputs(self) -> Dict[str, Dict[int, str]]:
|
|
@@ -47,6 +48,7 @@ class EfficientNetOnnxConfig(ViTOnnxConfig):
|
|
| 47 |
|
| 48 |
return common_outputs
|
| 49 |
|
|
|
|
| 50 |
__all__ = [
|
| 51 |
'MODEL_NAMES',
|
| 52 |
'EfficientNetConfig',
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
|
| 3 |
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
|
|
|
|
| 5 |
|
| 6 |
MODEL_NAMES = [
|
| 7 |
'efficientnet_b0',
|
|
|
|
| 16 |
'efficientnet_l2'
|
| 17 |
]
|
| 18 |
|
| 19 |
+
|
| 20 |
class EfficientNetConfig(PretrainedConfig):
|
| 21 |
model_type = 'efficientnet'
|
| 22 |
|
| 23 |
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
model_name: str = 'efficientnet_b0',
|
| 26 |
+
pretrained: bool = False,
|
| 27 |
+
num_classes: int = 1000,
|
| 28 |
+
global_pool: str = 'avg',
|
| 29 |
+
**kwargs,
|
| 30 |
+
):
|
|
|
|
| 31 |
if model_name not in MODEL_NAMES:
|
| 32 |
raise ValueError(f'`model_name` must be one of these: {MODEL_NAMES}, but got {model_name}')
|
| 33 |
|
|
|
|
| 35 |
self.pretrained = pretrained
|
| 36 |
self.num_classes = num_classes
|
| 37 |
self.global_pool = global_pool
|
|
|
|
| 38 |
super().__init__(**kwargs)
|
| 39 |
|
| 40 |
+
|
| 41 |
class EfficientNetOnnxConfig(ViTOnnxConfig):
|
| 42 |
@property
|
| 43 |
def outputs(self) -> Dict[str, Dict[int, str]]:
|
|
|
|
| 48 |
|
| 49 |
return common_outputs
|
| 50 |
|
| 51 |
+
|
| 52 |
__all__ = [
|
| 53 |
'MODEL_NAMES',
|
| 54 |
'EfficientNetConfig',
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 31474952
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1813e3c9f91308823701bc60e65f1417a1bc776274096c60784f4756a5a1d11
|
| 3 |
size 31474952
|
modeling_efficientnet.py
CHANGED
|
@@ -1,52 +1,126 @@
|
|
| 1 |
-
from torch import nn
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from transformers
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
config_class = EfficientNetConfig
|
| 29 |
-
|
| 30 |
-
def __init__(self, config):
|
| 31 |
-
super().__init__(config)
|
| 32 |
-
|
| 33 |
-
self.
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
]
|
|
|
|
| 1 |
+
from torch import nn, Tensor, tensor
|
| 2 |
+
from typing import Union, List, Optional
|
| 3 |
+
|
| 4 |
+
from transformers import PreTrainedModel
|
| 5 |
+
from transformers.modeling_outputs import (
|
| 6 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
| 7 |
+
ImageClassifierOutputWithNoAttention
|
| 8 |
+
)
|
| 9 |
+
from timm import create_model
|
| 10 |
+
|
| 11 |
+
from .configuration_efficientnet import EfficientNetConfig
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class EfficientNetModel(PreTrainedModel):
|
| 15 |
+
"""
|
| 16 |
+
EfficientNet model wrapper using Hugging Face's PreTrainedModel.
|
| 17 |
+
|
| 18 |
+
This class initializes an EfficientNet model from `timm` library
|
| 19 |
+
and defines a forward method that extracts feature representations.
|
| 20 |
+
|
| 21 |
+
Attributes
|
| 22 |
+
----------
|
| 23 |
+
config:
|
| 24 |
+
Configuration object containing model parameters.
|
| 25 |
+
model:
|
| 26 |
+
Instantiated EfficientNet model.
|
| 27 |
+
"""
|
| 28 |
+
config_class = EfficientNetConfig
|
| 29 |
+
|
| 30 |
+
def __init__(self, config):
|
| 31 |
+
super().__init__(config)
|
| 32 |
+
self.config = config
|
| 33 |
+
self.model = create_model(
|
| 34 |
+
config.model_name,
|
| 35 |
+
pretrained = config.pretrained,
|
| 36 |
+
num_classes = config.num_classes,
|
| 37 |
+
global_pool = config.global_pool,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def forward(self, pixel_values: Tensor) -> BaseModelOutputWithPoolingAndNoAttention:
|
| 41 |
+
"""
|
| 42 |
+
Parameters
|
| 43 |
+
----------
|
| 44 |
+
pixel_values : torch.Tensor
|
| 45 |
+
Input tensor representing image pixel values.
|
| 46 |
+
|
| 47 |
+
Returns
|
| 48 |
+
-------
|
| 49 |
+
BaseModelOutputWithPoolingAndNoAttention
|
| 50 |
+
Object containing the `last_hidden_state` and `pooled_output`.
|
| 51 |
+
"""
|
| 52 |
+
last_hidden_state = self.model.forward_features(pixel_values)
|
| 53 |
+
pooler_output = self.model.forward_head(last_hidden_state, pre_logits=True)
|
| 54 |
+
|
| 55 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
| 56 |
+
last_hidden_state = last_hidden_state,
|
| 57 |
+
pooler_output=pooler_output
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class EfficientNetModelForImageClassification(PreTrainedModel):
|
| 62 |
+
"""
|
| 63 |
+
EfficientNet model wrapper using Hugging Face's PreTrainedModel.
|
| 64 |
+
|
| 65 |
+
This class initializes an EfficientNet model from `timm` library
|
| 66 |
+
and defines a forward method that return logits.
|
| 67 |
+
|
| 68 |
+
It supports training when labels are provided
|
| 69 |
+
|
| 70 |
+
Attributes
|
| 71 |
+
----------
|
| 72 |
+
config :
|
| 73 |
+
Configuration object containing model parameters.
|
| 74 |
+
model :
|
| 75 |
+
Instantiated EfficientNet model.
|
| 76 |
+
"""
|
| 77 |
+
config_class = EfficientNetConfig
|
| 78 |
+
|
| 79 |
+
def __init__(self, config):
|
| 80 |
+
super().__init__(config)
|
| 81 |
+
self.config = config
|
| 82 |
+
self.model = create_model(
|
| 83 |
+
config.model_name,
|
| 84 |
+
pretrained = config.pretrained,
|
| 85 |
+
num_classes = config.num_classes,
|
| 86 |
+
global_pool = config.global_pool,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def forward(
|
| 90 |
+
self,
|
| 91 |
+
pixel_values: Tensor,
|
| 92 |
+
labels: Optional[Union[List[int], Tensor]] = None
|
| 93 |
+
) -> ImageClassifierOutputWithNoAttention:
|
| 94 |
+
"""
|
| 95 |
+
Parameters
|
| 96 |
+
----------
|
| 97 |
+
pixel_values : torch.Tensor
|
| 98 |
+
Input tensor representing image pixel values.
|
| 99 |
+
labels : Optional[Union[List[int], torch.Tensor]]
|
| 100 |
+
Ground truth labels for training and computing loss.
|
| 101 |
+
List of integers/tensor representing class IDs.
|
| 102 |
+
|
| 103 |
+
Returns
|
| 104 |
+
-------
|
| 105 |
+
ImageClassifierOutputWithNoAttention
|
| 106 |
+
Object containing `logits` and `loss`.
|
| 107 |
+
"""
|
| 108 |
+
self.model.training = False if labels is None else True
|
| 109 |
+
|
| 110 |
+
logits = self.model(pixel_values)
|
| 111 |
+
|
| 112 |
+
loss = None
|
| 113 |
+
if self.model.training:
|
| 114 |
+
labels = tensor(labels)
|
| 115 |
+
ce_loss = nn.CrossEntropyLoss()
|
| 116 |
+
loss = ce_loss(logits, labels)
|
| 117 |
+
|
| 118 |
+
return ImageClassifierOutputWithNoAttention(
|
| 119 |
+
loss = loss,
|
| 120 |
+
logits = logits,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
__all__ = [
|
| 124 |
+
"EfficientNetModel",
|
| 125 |
+
"EfficientNetModelForImageClassification"
|
| 126 |
]
|