efficientnet_b1 / configuration_efficientnet.py
Thastp's picture
Upload model
fe23128 verified
from typing import Dict
from transformers.configuration_utils import PretrainedConfig
from optimum.exporters.onnx.model_configs import ViTOnnxConfig
MODEL_NAMES = [
'efficientnet_b0',
'efficientnet_b1',
'efficientnet_b2',
'efficientnet_b3',
'efficientnet_b4',
'efficientnet_b5',
'efficientnet_b6',
'efficientnet_b7',
'efficientnet_b8',
'efficientnet_l2'
]
class EfficientNetConfig(PretrainedConfig):
model_type = 'efficientnet'
def __init__(
self,
model_name: str = 'efficientnet_b0',
pretrained: bool = False,
num_classes: int = 1000,
global_pool: str = 'avg',
**kwargs,
):
if model_name not in MODEL_NAMES:
raise ValueError(f'`model_name` must be one of these: {MODEL_NAMES}, but got {model_name}')
self.model_name = model_name
self.pretrained = pretrained
self.num_classes = num_classes
self.global_pool = global_pool
super().__init__(**kwargs)
class EfficientNetOnnxConfig(ViTOnnxConfig):
@property
def outputs(self) -> Dict[str, Dict[int, str]]:
common_outputs = super().outputs
if self.task == "image-classification":
common_outputs["logits"] = {0: "batch_size", 1: "num_classes"}
return common_outputs
__all__ = [
'EfficientNetConfig',
'EfficientNetOnnxConfig'
]