Description_Maker / desription.py
Thanoss's picture
Upload desription.py
9585d12 verified
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pickle
from datasets import load_dataset
class CompanyDescriptionModel:
def __init__(self):
self.vectorizer = TfidfVectorizer()
self.company_descriptions = {}
self.description_vectors = None
def load_huggingface_data(self):
"""
Load and process the job descriptions dataset from HuggingFace
"""
print("Loading dataset from HuggingFace...")
dataset = load_dataset("jacob-hugging-face/job-descriptions")
# Process the training split
train_data = dataset['train']
# Create company-description pairs
for item in train_data:
company = item['company_name'].strip().lower()
description = item['job_description'].strip()
# If company already exists, append new description
if company in self.company_descriptions:
if isinstance(self.company_descriptions[company], list):
self.company_descriptions[company].append(description)
else:
self.company_descriptions[company] = [self.company_descriptions[company], description]
else:
self.company_descriptions[company] = description
print(f"Loaded descriptions for {len(self.company_descriptions)} companies")
# Create vectors for all descriptions
descriptions = []
for desc in self.company_descriptions.values():
if isinstance(desc, list):
# If multiple descriptions, join them
descriptions.append(" ".join(desc))
else:
descriptions.append(desc)
self.description_vectors = self.vectorizer.fit_transform(descriptions)
def get_description(self, company_name, similarity_threshold=0.3):
"""
Get job descriptions for a company
"""
company_name = company_name.lower().strip()
# Direct match
if company_name in self.company_descriptions:
desc = self.company_descriptions[company_name]
if isinstance(desc, list):
return True, f"Found {len(desc)} job descriptions for {company_name}:\n\n" + "\n\n---\n\n".join(desc)
return True, f"Job description for {company_name}:\n\n{desc}"
# Try to find similar company names
try:
company_vector = self.vectorizer.transform([company_name])
similarities = cosine_similarity(company_vector, self.description_vectors).flatten()
max_sim_idx = np.argmax(similarities)
if similarities[max_sim_idx] >= similarity_threshold:
similar_company = list(self.company_descriptions.keys())[max_sim_idx]
desc = self.company_descriptions[similar_company]
if isinstance(desc, list):
return True, f"Similar to '{similar_company}':\n\n" + "\n\n---\n\n".join(desc)
return True, f"Similar to '{similar_company}':\n\n{desc}"
else:
return False, f"No job descriptions found for '{company_name}'. Please provide one for training."
except Exception as e:
return False, f"Error processing company name: {str(e)}"
def add_new_description(self, company_name, description):
"""
Add a new company and job description
"""
company_name = company_name.lower().strip()
if company_name in self.company_descriptions:
if isinstance(self.company_descriptions[company_name], list):
self.company_descriptions[company_name].append(description)
else:
self.company_descriptions[company_name] = [self.company_descriptions[company_name], description]
else:
self.company_descriptions[company_name] = description
# Retrain vectors
descriptions = []
for desc in self.company_descriptions.values():
if isinstance(desc, list):
descriptions.append(" ".join(desc))
else:
descriptions.append(desc)
self.description_vectors = self.vectorizer.fit_transform(descriptions)
def save_model(self, filename):
"""
Save the model to a file
"""
model_data = {
'company_descriptions': self.company_descriptions,
'vectorizer': self.vectorizer,
'description_vectors': self.description_vectors
}
with open(filename, 'wb') as f:
pickle.dump(model_data, f)
def load_model(self, filename):
"""
Load the model from a file
"""
try:
with open(filename, 'rb') as f:
model_data = pickle.load(f)
self.company_descriptions = model_data['company_descriptions']
self.vectorizer = model_data['vectorizer']
self.description_vectors = model_data['description_vectors']
return True
except FileNotFoundError:
return False
def main():
model = CompanyDescriptionModel()
model_file = 'company_description_model.pkl'
# Try to load existing model, if not found, load from HuggingFace
if not model.load_model(model_file):
print("No existing model found. Loading data from HuggingFace...")
model.load_huggingface_data()
model.save_model(model_file)
print("Initial model created and saved.")
while True:
print("\n=== Company Job Description System ===")
company = input("Enter a company name to get job descriptions (or 'quit' to exit): ").strip()
if company.lower() == 'quit':
break
found, description = model.get_description(company)
print(f"\nResult:\n{description}")
if not found:
print("\nLet's add this company to our database!")
new_description = input("Please provide a job description for this company: ").strip()
model.add_new_description(company, new_description)
print(f"\nThank you! Job description for '{company}' has been added to the database.")
# Save the updated model
model.save_model(model_file)
print("Model has been updated and saved.")
if __name__ == "__main__":
main()