ThankGod commited on
Commit
1f0182c
1 Parent(s): 509d627

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -13
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.4590
20
- - Accuracy: 0.8384
21
 
22
  ## Model description
23
 
@@ -45,22 +45,27 @@ The following hyperparameters were used during training:
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.1
48
- - num_epochs: 10
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
- | 1.2892 | 1.0 | 10 | 0.8297 | 0.7377 |
55
- | 0.6913 | 2.0 | 20 | 0.6707 | 0.7670 |
56
- | 0.5364 | 3.0 | 30 | 0.5587 | 0.7956 |
57
- | 0.4568 | 4.0 | 40 | 0.5270 | 0.8122 |
58
- | 0.4103 | 5.0 | 50 | 0.5141 | 0.8106 |
59
- | 0.3411 | 6.0 | 60 | 0.4820 | 0.8273 |
60
- | 0.2993 | 7.0 | 70 | 0.4801 | 0.8304 |
61
- | 0.2608 | 8.0 | 80 | 0.4643 | 0.8384 |
62
- | 0.2291 | 9.0 | 90 | 0.4703 | 0.8384 |
63
- | 0.224 | 10.0 | 100 | 0.4590 | 0.8384 |
 
 
 
 
 
64
 
65
 
66
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.2687
20
+ - Accuracy: 0.9017
21
 
22
  ## Model description
23
 
 
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 15
49
 
50
  ### Training results
51
 
52
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 0.5392 | 1.0 | 112 | 0.5796 | 0.7884 |
55
+ | 0.4716 | 2.0 | 224 | 0.4380 | 0.8304 |
56
+ | 0.3932 | 3.0 | 336 | 0.3749 | 0.8534 |
57
+ | 0.3446 | 4.0 | 448 | 0.3851 | 0.8423 |
58
+ | 0.3401 | 5.0 | 560 | 0.3141 | 0.8708 |
59
+ | 0.2842 | 6.0 | 672 | 0.3309 | 0.8685 |
60
+ | 0.3126 | 7.0 | 784 | 0.3493 | 0.8629 |
61
+ | 0.2748 | 8.0 | 896 | 0.3391 | 0.8772 |
62
+ | 0.2455 | 9.0 | 1008 | 0.3053 | 0.8843 |
63
+ | 0.2361 | 10.0 | 1120 | 0.2749 | 0.8954 |
64
+ | 0.2218 | 11.0 | 1232 | 0.2842 | 0.8994 |
65
+ | 0.2071 | 12.0 | 1344 | 0.2507 | 0.9089 |
66
+ | 0.2228 | 13.0 | 1456 | 0.2614 | 0.8994 |
67
+ | 0.2018 | 14.0 | 1568 | 0.2664 | 0.9105 |
68
+ | 0.1774 | 15.0 | 1680 | 0.2687 | 0.9017 |
69
 
70
 
71
  ### Framework versions