update model card README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,9 @@ tags:
|
|
5 |
datasets:
|
6 |
- food101
|
7 |
metrics:
|
|
|
|
|
|
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
- name: my_awesome_food_model
|
@@ -19,9 +22,18 @@ model-index:
|
|
19 |
split: train[:5000]
|
20 |
args: default
|
21 |
metrics:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 1.
|
35 |
-
-
|
|
|
|
|
|
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -64,11 +79,11 @@ The following hyperparameters were used during training:
|
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
-
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
5 |
datasets:
|
6 |
- food101
|
7 |
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: my_awesome_food_model
|
|
|
22 |
split: train[:5000]
|
23 |
args: default
|
24 |
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8855567868882221
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.887
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8818977914615195
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.887
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.6405
|
47 |
+
- Precision: 0.8856
|
48 |
+
- Recall: 0.887
|
49 |
+
- F1: 0.8819
|
50 |
+
- Accuracy: 0.887
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 2.7494 | 0.99 | 62 | 2.5554 | 0.7488 | 0.829 | 0.7859 | 0.829 |
|
85 |
+
| 1.9011 | 2.0 | 125 | 1.8058 | 0.8825 | 0.878 | 0.8645 | 0.878 |
|
86 |
+
| 1.6532 | 2.98 | 186 | 1.6405 | 0.8856 | 0.887 | 0.8819 | 0.887 |
|
87 |
|
88 |
|
89 |
### Framework versions
|