|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: train |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4835 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-samsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5071 |
|
- Rouge1: 0.4835 |
|
- Rouge2: 0.2546 |
|
- Rougel: 0.4128 |
|
- Rougelsum: 0.4131 |
|
- Gen Len: 17.9817 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 1.8082 | 1.0 | 2947 | 1.5613 | 0.4763 | 0.2412 | 0.4043 | 0.4041 | 17.9332 | |
|
| 1.5609 | 2.0 | 5894 | 1.5206 | 0.4827 | 0.2485 | 0.4082 | 0.4085 | 18.3169 | |
|
| 1.4228 | 3.0 | 8841 | 1.5008 | 0.4851 | 0.2557 | 0.4138 | 0.4137 | 17.9851 | |
|
| 1.3131 | 4.0 | 11788 | 1.5071 | 0.4835 | 0.2546 | 0.4128 | 0.4131 | 17.9817 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|