call example
Browse files
README.md
CHANGED
@@ -3,4 +3,49 @@ license: other
|
|
3 |
license_name: license
|
4 |
license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B/blob/main/LICENSE
|
5 |
---
|
6 |
-
# A fine-tuned version of the Qwen/Qwen1.5-0.5B model, the data set used is alpaca_gpt4_data_zh.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
license_name: license
|
4 |
license_link: https://huggingface.co/Qwen/Qwen1.5-0.5B/blob/main/LICENSE
|
5 |
---
|
6 |
+
# A fine-tuned version of the Qwen/Qwen1.5-0.5B model, the data set used is alpaca_gpt4_data_zh.json
|
7 |
+
· Call example
|
8 |
+
```python
|
9 |
+
import os
|
10 |
+
|
11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
12 |
+
|
13 |
+
messages = [
|
14 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
15 |
+
]
|
16 |
+
|
17 |
+
device = "cuda" # the device to load the model onto
|
18 |
+
model_path = os.path.dirname(__file__)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_path,
|
21 |
+
torch_dtype="auto",
|
22 |
+
device_map="auto"
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
25 |
+
response = ''
|
26 |
+
if __name__ == '__main__':
|
27 |
+
|
28 |
+
while True:
|
29 |
+
# prompt = "Give me a short introduction to large language model."
|
30 |
+
prompt = input("input:")
|
31 |
+
messages.append({"role": "user", "content": prompt})
|
32 |
+
text = tokenizer.apply_chat_template(
|
33 |
+
messages,
|
34 |
+
tokenize=False,
|
35 |
+
add_generation_prompt=True
|
36 |
+
)
|
37 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
38 |
+
|
39 |
+
generated_ids = model.generate(
|
40 |
+
model_inputs.input_ids,
|
41 |
+
max_new_tokens=512
|
42 |
+
)
|
43 |
+
generated_ids = [
|
44 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
45 |
+
]
|
46 |
+
|
47 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
48 |
+
print(response)
|
49 |
+
messages.append({"role": "system", "content": response}, )
|
50 |
+
|
51 |
+
```
|