|
--- |
|
license: mit |
|
--- |
|
Pretrained on 10k hours WenetSpeech L subset. More details in [TencentGameMate/chinese_speech_pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) |
|
|
|
This model does not have a tokenizer as it was pretrained on audio alone. |
|
In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. |
|
|
|
python package: |
|
transformers==4.16.2 |
|
|
|
```python |
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import soundfile as sf |
|
from fairseq import checkpoint_utils |
|
|
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2ForPreTraining, |
|
Wav2Vec2Model, |
|
) |
|
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices |
|
|
|
model_path="" |
|
wav_path="" |
|
mask_prob=0.0 |
|
mask_length=10 |
|
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path) |
|
model = Wav2Vec2Model.from_pretrained(model_path) |
|
|
|
# for pretrain: Wav2Vec2ForPreTraining |
|
# model = Wav2Vec2ForPreTraining.from_pretrained(model_path) |
|
|
|
model = model.to(device) |
|
model = model.half() |
|
model.eval() |
|
|
|
wav, sr = sf.read(wav_path) |
|
input_values = feature_extractor(wav, return_tensors="pt").input_values |
|
input_values = input_values.half() |
|
input_values = input_values.to(device) |
|
|
|
# for Wav2Vec2ForPreTraining |
|
# batch_size, raw_sequence_length = input_values.shape |
|
# sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) |
|
# mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2) |
|
# mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long) |
|
|
|
with torch.no_grad(): |
|
outputs = model(input_values) |
|
last_hidden_state = outputs.last_hidden_state |
|
|
|
# for Wav2Vec2ForPreTraining |
|
# outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True) |
|
# last_hidden_state = outputs.hidden_states[-1] |
|
|
|
``` |