|
from typing import Optional |
|
from collections import deque |
|
from queue import Queue |
|
import copy |
|
|
|
|
|
class History: |
|
|
|
def __init__(self, tokenizer, history): |
|
''' |
|
init from a list of dict |
|
''' |
|
|
|
self.input_history = deque() |
|
self.tokenizer = tokenizer |
|
if history: |
|
self._transfer_from_list(history) |
|
|
|
def _transfer_from_list(self, history): |
|
for message in history: |
|
content = message.get("content") |
|
message.update(self.tokenizer(content)) |
|
self.input_history.append(message) |
|
|
|
def append(self, message): |
|
content = message.get("content") |
|
message.update(self.tokenizer(content)) |
|
self.input_history.append(message) |
|
|
|
def append_left(self, message): |
|
content = message.get("content") |
|
message.update(self.tokenizer(content)) |
|
self.input_history.appendleft(message) |
|
|
|
def pop(self): |
|
x = self.input_history.pop() |
|
return x |
|
|
|
def pop_left(self): |
|
x = self.pop_left() |
|
return x |
|
|
|
def update(self, content: str): |
|
x = self.input_history.pop() |
|
self.append({"role": x["role"], "content": content}) |
|
|
|
def __len__(self): |
|
return self.input_history.__len__() |
|
|
|
def __str__(self): |
|
return self.input_history.__str__() |
|
|
|
def __copy__(self): |
|
new_instance = type(self)(self.tokenizer, []) |
|
new_instance.input_history = copy.copy(self.input_history) |
|
return new_instance |
|
|
|
def __deepcopy__(self, memodict={}): |
|
new_instance = type(self)(self.tokenizer, []) |
|
new_instance.input_history = copy.deepcopy(self.input_history) |
|
return new_instance |
|
|
|
|
|
class TelechatIterTextStreamer: |
|
""" |
|
With reference to the TextIterStreamers in transformers, we have rewritten this class |
|
""" |
|
|
|
def __init__( |
|
self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None, |
|
**decode_kwargs |
|
): |
|
|
|
self.tokenizer = tokenizer |
|
self.history = history |
|
self.skip_prompt = skip_prompt |
|
self.timeout = timeout |
|
self.decode_kwargs = decode_kwargs |
|
|
|
self.text_queue = Queue() |
|
self.token_cache = [] |
|
self.cache_time = 0 |
|
self.text_until = "" |
|
self.stop_signal = None |
|
self.next_tokens_are_prompt = True |
|
|
|
self.history.append({"role": "bot", "content": self.text_until}) |
|
|
|
def put(self, value): |
|
""" |
|
put printable text into queue |
|
""" |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError("TextStreamer only supports batch size 1") |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if self.skip_prompt and self.next_tokens_are_prompt: |
|
self.next_tokens_are_prompt = False |
|
return |
|
|
|
if value[-1] == self.tokenizer.eos_token_id: |
|
return |
|
|
|
|
|
self.token_cache.extend(value.tolist()) |
|
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) |
|
self.cache_time += 1 |
|
|
|
if self._is_printable(text) or self.cache_time >= 6: |
|
self.text_until += text |
|
self.token_cache = [] |
|
self.cache_time = 0 |
|
|
|
else: |
|
return |
|
|
|
self.on_finalized_text(text) |
|
|
|
def end(self): |
|
"""Flushes any remaining cache and prints a newline to stdout.""" |
|
|
|
text = "" |
|
if len(self.token_cache) > 0: |
|
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) |
|
self.text_until += text |
|
self.on_finalized_text(text, stream_end=True) |
|
self.clear_cache() |
|
|
|
def clear_cache(self): |
|
self.cache_time = 0 |
|
self.token_cache = [] |
|
self.text_until = "" |
|
self.history = None |
|
self.next_tokens_are_prompt = True |
|
|
|
def on_finalized_text(self, text: str, stream_end: bool = False): |
|
"""Put the text tuple in the queue.""" |
|
self.history.update(self.text_until) |
|
self.text_queue.put((text, self.history), timeout=self.timeout) |
|
if stream_end: |
|
self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout) |
|
|
|
@staticmethod |
|
def _is_printable(cp): |
|
"""Checks whether tokens can be decoded or not""" |
|
if "�" in cp: |
|
return False |
|
return True |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
value_now, history_until = self.text_queue.get(timeout=self.timeout) |
|
if value_now == self.stop_signal: |
|
raise StopIteration() |
|
else: |
|
return value_now, history_until |
|
|