shunxing1234 commited on
Commit
a7e1bab
1 Parent(s): a5466af

Upload 9 files

Browse files
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_residual_connection_post_layernorm": false,
3
+ "architectures": [
4
+ "TelechatForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_telechat.TelechatConfig",
8
+ "AutoModelForCausalLM": "modeling_telechat.TelechatForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "bias_dropout_fusion": true,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_dropout": 0.0,
16
+ "hidden_size": 2048,
17
+ "initializer_range": 0.02,
18
+ "layer_norm_epsilon": 1e-05,
19
+ "masked_softmax_fusion": true,
20
+ "model_type": "telechat",
21
+ "n_head": 32,
22
+ "n_inner": null,
23
+ "n_layer": 16,
24
+ "offset_alibi": 100,
25
+ "pad_token_id": 3,
26
+ "pretraining_tp": 2,
27
+ "skip_bias_add": true,
28
+ "skip_bias_add_qkv": false,
29
+ "slow_but_exact": false,
30
+ "transformers_version": "4.24.0",
31
+ "unk_token_id": 0,
32
+ "use_cache": true,
33
+ "vocab_size": 120000,
34
+ "ffn_hidden_size": 5460,
35
+ "flash_attn":true,
36
+ "tie_word_embeddings":false,
37
+ "training_seqlen":8192,
38
+ "base_seqlen":8192
39
+ }
40
+
configuration_telechat.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Telechat configuration"""
17
+
18
+ from packaging import version
19
+ from collections import OrderedDict
20
+ from transformers.utils import is_torch_available, logging
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from typing import TYPE_CHECKING, Any, List, Mapping, Optional
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ class TelechatConfig(PretrainedConfig):
27
+ """
28
+ Args:
29
+ vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model.
30
+ hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states.
31
+ ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states.
32
+ n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer
33
+ n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer.
34
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers.
35
+ initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
36
+ apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
37
+ hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout.
38
+ attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs
39
+ use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions.
40
+ training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning.
41
+ logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation.
42
+ embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm.
43
+
44
+ """
45
+
46
+ model_type = "telechat"
47
+ keys_to_ignore_at_inference = ["past_key_values"]
48
+ attribute_map = {
49
+ "num_hidden_layers": "n_layer",
50
+ "num_attention_heads": "n_head",
51
+ }
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_size=160256,
56
+ hidden_size=4096,
57
+ n_layer=30,
58
+ n_head=32,
59
+ layer_norm_epsilon=1e-5,
60
+ initializer_range=0.02,
61
+ use_cache=True,
62
+ bos_token_id=1,
63
+ eos_token_id=2,
64
+ apply_residual_connection_post_layernorm=False,
65
+ hidden_dropout=0.0,
66
+ attention_dropout=0.0,
67
+ ffn_hidden_size=12288,
68
+ training_seqlen = 8192,
69
+ logn = True,
70
+ embed_layernorm = False,
71
+ **kwargs,
72
+ ):
73
+ self.vocab_size = vocab_size
74
+ n_embed = kwargs.pop("n_embed", None)
75
+ self.hidden_size = hidden_size if n_embed is None else n_embed
76
+ self.n_layer = n_layer
77
+ self.n_head = n_head
78
+ self.layer_norm_epsilon = layer_norm_epsilon
79
+ self.initializer_range = initializer_range
80
+ self.use_cache = use_cache
81
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
82
+ self.hidden_dropout = hidden_dropout
83
+ self.attention_dropout = attention_dropout
84
+ self.bos_token_id = bos_token_id
85
+ self.eos_token_id = eos_token_id
86
+ self.logn = logn
87
+ self.ffn_hidden_size = ffn_hidden_size
88
+ self.training_seqlen = training_seqlen
89
+ self.embed_layernorm = embed_layernorm
90
+
91
+
92
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
93
+
modeling_telechat.py ADDED
@@ -0,0 +1,840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # coding=utf-8
3
+ # Copyright 2022 HuggingFace Inc. team and BigScience workshop.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
18
+
19
+ # Copyright (c) 2021 EleutherAI
20
+ # This file is based on code by the authors denoted below and has been modified from its original version.
21
+ #
22
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
23
+ #
24
+ # Licensed under the Apache License, Version 2.0 (the "License");
25
+ # you may not use this file except in compliance with the License.
26
+ # You may obtain a copy of the License at
27
+ #
28
+ # http://www.apache.org/licenses/LICENSE-2.0
29
+ #
30
+ # Unless required by applicable law or agreed to in writing, software
31
+ # distributed under the License is distributed on an "AS IS" BASIS,
32
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
33
+ # See the License for the specific language governing permissions and
34
+ # limitations under the License.
35
+
36
+
37
+
38
+
39
+ """PyTorch TELECHAT model."""
40
+
41
+ import warnings
42
+ from typing import Optional, Tuple, Union
43
+
44
+ import torch
45
+ import math
46
+ from torch import nn
47
+ import torch.utils.checkpoint
48
+ from torch.nn import functional as F
49
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
50
+ from transformers.modeling_outputs import (
51
+ BaseModelOutputWithPastAndCrossAttentions,
52
+ CausalLMOutputWithCrossAttentions
53
+ )
54
+ from transformers.modeling_utils import PreTrainedModel
55
+ from transformers.utils import logging
56
+
57
+ from .configuration_telechat import TelechatConfig
58
+
59
+ logger = logging.get_logger(__name__)
60
+
61
+ _CHECKPOINT_FOR_DOC = "telechat"
62
+ _CONFIG_FOR_DOC = "TelechatConfig"
63
+
64
+ TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []
65
+
66
+ try:
67
+ from einops import rearrange
68
+ except ImportError:
69
+ rearrange = None
70
+
71
+ use_flash_attn = True
72
+ try:
73
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func
74
+ except ImportError:
75
+ try:
76
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
77
+ except ImportError:
78
+ flash_attn_unpadded_func = None
79
+
80
+
81
+
82
+ class RotaryEmbedding(torch.nn.Module):
83
+ # Extracted from: https://github.com/EleutherAI/gpt-neox
84
+ def __init__(self, dim ,config, base=10000, precision=torch.half):
85
+ super().__init__()
86
+ self.config = config
87
+ self.dim = dim
88
+ self.base = base
89
+ self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda()
90
+ self.max_seq_len_cached = None
91
+ self.cos_cached = None
92
+ self.sin_cached = None
93
+ self.precision = precision
94
+
95
+ def get_mscale(self,scale=1):
96
+ if scale <= 1:
97
+ return 1.0
98
+ return 0.1 * math.log(scale) + 1.0
99
+
100
+ def get_ntk_alpha(self, true_seq_len):
101
+ context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1
102
+ # ntk_alpha = 2 ** context_value - 1
103
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
104
+ ntk_alpha = max(ntk_alpha, 1)
105
+ return ntk_alpha
106
+
107
+ def forward(self, x, seq_dim=0, seq_len=None):
108
+ if seq_len is None:
109
+ seq_len = x.shape[seq_dim]
110
+ seq_len = max(seq_len, self.config.training_seqlen)
111
+ ntk_alpha = self.get_ntk_alpha(seq_len)
112
+ self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
113
+ if True:
114
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
115
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float( )/ self.dim ))
116
+ self.max_seq_len_cached = seq_len
117
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
118
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
119
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
120
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
121
+ if self.precision == torch.bfloat16:
122
+ emb = emb.float()
123
+ # [sx, 1 (b * np), hn]
124
+ self.cos_cached = self.mscale *emb.cos()[:, None, :].half()
125
+ self.sin_cached = self.mscale *emb.sin()[:, None, :].half()
126
+ if self.precision == torch.bfloat16:
127
+ self.cos_cached = self.cos_cached.bfloat16()
128
+ self.sin_cached = self.sin_cached.bfloat16()
129
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
130
+
131
+
132
+
133
+ # rotary pos emb helpers:
134
+ def rotate_half(x):
135
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
136
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
137
+
138
+ def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16
139
+ cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
140
+ return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
141
+
142
+
143
+ class MixedFusedRMSNorm(nn.Module):
144
+ # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
145
+ def __init__(self, hidden_size, eps=1e-6):
146
+ super().__init__()
147
+ self.weight = nn.Parameter(torch.ones(hidden_size))
148
+ self.variance_epsilon = eps
149
+
150
+ def forward(self, hidden_states):
151
+ input_dtype = hidden_states.dtype
152
+ hidden_states = hidden_states.to(torch.float32)
153
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
154
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
155
+ return self.weight * hidden_states.to(input_dtype)
156
+
157
+
158
+ class FlashSelfAttention(torch.nn.Module):
159
+ # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
160
+ """Implement the scaled dot product attention with softmax.
161
+ Arguments
162
+ ---------
163
+ softmax_scale: The temperature to use for the softmax attention.
164
+ (default: 1/sqrt(d_keys) where d_keys is computed at
165
+ runtime)
166
+ attention_dropout: The dropout rate to apply to the attention
167
+ (default: 0.0)
168
+ """
169
+
170
+ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
171
+ device=None, dtype=None):
172
+ super().__init__()
173
+ assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
174
+ 'e.g., with pip install flash-attn')
175
+ assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
176
+ self.causal = causal
177
+ self.softmax_scale = softmax_scale
178
+ self.dropout_p = attention_dropout
179
+
180
+ def forward(self, q, k, v):
181
+ """Implements the multihead softmax attention.
182
+ Arguments
183
+ ---------
184
+ q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
185
+ """
186
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
187
+ assert all((i.is_cuda for i in (q, k, v)))
188
+
189
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
190
+ seqlen_k = k.shape[1]
191
+
192
+ q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
193
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
194
+ device=q.device)
195
+ self.training = False
196
+ if self.training:
197
+ # during training q,k,v always have same seqlen
198
+ assert seqlen_k == seqlen_q
199
+
200
+ is_causal = self.causal
201
+ cu_seqlens_k = cu_seqlens_q
202
+ dropout_p = self.dropout_p
203
+ else:
204
+ # turn off FA causal mask after first inference autoregressive iteration
205
+ # only on first autoregressive step q,k,v have same seqlen
206
+ is_causal = seqlen_q == seqlen_k
207
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
208
+ device=q.device)
209
+ dropout_p = 0
210
+
211
+ output = flash_attn_unpadded_func(
212
+ q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
213
+ dropout_p=dropout_p,
214
+ softmax_scale=self.softmax_scale, causal=is_causal
215
+ )
216
+
217
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
218
+ return output
219
+
220
+
221
+
222
+ def _make_causal_mask(
223
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
224
+ ) -> torch.BoolTensor:
225
+ """
226
+ Make causal mask used for self-attention.
227
+ """
228
+ batch_size, target_length = input_ids_shape
229
+ mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
230
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
231
+ seq_ids = torch.arange(target_length, device=device)
232
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
233
+
234
+ if past_key_values_length > 0:
235
+ mask[:, :past_key_values_length] = False
236
+
237
+ expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
238
+ return expanded_mask
239
+
240
+
241
+ def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
242
+ """
243
+ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
244
+ """
245
+ batch_size, src_length = mask.shape
246
+ tgt_length = tgt_length if tgt_length is not None else src_length
247
+
248
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
249
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
250
+
251
+
252
+
253
+ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
254
+ """
255
+ Dropout add function
256
+
257
+ Args:
258
+ x (`torch.tensor`, *required*):
259
+ input tensor
260
+ residual (`torch.tensor`, *required*):
261
+ residual tensor
262
+ prob (`float`, *required*):
263
+ dropout probability
264
+ training (`bool`, *required*):
265
+ training mode
266
+ """
267
+ out = F.dropout(x, p=prob, training=training)
268
+ out = residual + out
269
+ return out
270
+
271
+
272
+ def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
273
+ """
274
+ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
275
+ make the model jitable.
276
+
277
+ Args:
278
+ x (`torch.tensor`, *required*):
279
+ input hidden states
280
+ """
281
+ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
282
+
283
+
284
+ def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
285
+ """
286
+ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
287
+ 0.3989423 * x * torch.exp(-0.5 * x * x)
288
+
289
+ Args:
290
+ g (`torch.tensor`, *required*):
291
+ gradient output tensor
292
+ x (`torch.tensor`, *required*):
293
+ input tensor
294
+ """
295
+ x = x[0] # x is a tuple of 1 element, needs to unpack it first
296
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
297
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
298
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
299
+ return ff * g
300
+
301
+
302
+ class GeLUFunction(torch.autograd.Function):
303
+ @staticmethod
304
+ def forward(ctx, input: torch.Tensor) -> torch.Tensor:
305
+ ctx.save_for_backward(input)
306
+ return telechat_gelu_forward(input)
307
+
308
+ @staticmethod
309
+ def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
310
+ input = ctx.saved_tensors
311
+ tmp = telechat_gelu_back(grad_output, input)
312
+ return tmp
313
+
314
+
315
+ class TelechatGelu(nn.Module):
316
+ """
317
+ TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model
318
+ torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
319
+ copied from Megatron-DeepSpeed code and adapted for our needs
320
+
321
+ See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
322
+ """
323
+
324
+ def __init__(self):
325
+ super().__init__()
326
+
327
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
328
+ if self.training:
329
+ return GeLUFunction.apply(x)
330
+ else:
331
+ return telechat_gelu_forward(x)
332
+
333
+
334
+ class TelechatAttention(nn.Module):
335
+ def __init__(self, config: TelechatConfig ,layer_idx):
336
+ super().__init__()
337
+ self.kv_cache = None
338
+ self.layer_idx = layer_idx
339
+
340
+ self.hidden_size = config.hidden_size
341
+ self.num_heads = config.n_head
342
+ self.head_dim = self.hidden_size // self.num_heads
343
+ self.split_size = self.hidden_size
344
+ self.hidden_dropout = config.hidden_dropout
345
+ self.config = config
346
+
347
+ if self.head_dim * self.num_heads != self.hidden_size:
348
+ raise ValueError(
349
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
350
+ f" {self.num_heads})."
351
+ )
352
+
353
+ # Layer-wise attention scaling
354
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
355
+ self.beta = 1.0
356
+
357
+ self.num_key_value_heads = self.num_heads
358
+ kv_projection_size = self.head_dim * self.num_key_value_heads
359
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
360
+ self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
361
+ self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False)
362
+ self.dense = nn.Linear(self.hidden_size, self.hidden_size)
363
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
364
+ self.rotary_emb = RotaryEmbedding(self.head_dim ,config=config)
365
+
366
+ self.core_attention_flash = FlashSelfAttention(
367
+ causal=True, attention_dropout=config.attention_dropout
368
+ )
369
+
370
+ self.last_key_layer = None
371
+ #logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)]
372
+ #self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda()
373
+
374
+
375
+ def repeat_kv(self, hidden_states, n_rep):
376
+ slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
377
+ if n_rep == 1:
378
+ return hidden_states
379
+ hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
380
+ head_dim)
381
+ return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)
382
+
383
+ def split_tensor_along_last_dim(self,
384
+ tensor: torch.Tensor,
385
+ num_partitions: int,
386
+ contiguous_split_chunks: bool = False,
387
+ ):
388
+
389
+ # Get the size and dimension.
390
+ last_dim = tensor.dim() - 1
391
+ last_dim_size = tensor.size()[last_dim] // num_partitions
392
+ # Split.
393
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
394
+ # Note: torch.split does not create contiguous tensors by default.
395
+ if contiguous_split_chunks:
396
+ return tuple(chunk.contiguous() for chunk in tensor_list)
397
+
398
+ return tensor_list
399
+
400
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
401
+ batch_size_and_num_heads, seq_length, _ = x.shape
402
+ batch_size = batch_size_and_num_heads // self.num_heads
403
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
404
+ x = x.permute(0, 2, 1, 3)
405
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
406
+
407
+ def forward(
408
+ self,
409
+ hidden_states: torch.Tensor,
410
+ residual: torch.Tensor,
411
+ attention_mask: torch.Tensor,
412
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
413
+ use_cache: bool = False,
414
+ output_attentions: bool = False,
415
+ ):
416
+ hidden_states = hidden_states.transpose(1, 0)
417
+ query_layer = self.query(hidden_states)
418
+ new_tensor_shape = query_layer.size()[:-1] + \
419
+ (self.num_heads,
420
+ self.head_dim)
421
+ query_layer = query_layer.view(*new_tensor_shape)
422
+
423
+ mixed_kv_layer = self.key_value(hidden_states)
424
+ new_tensor_shape = mixed_kv_layer.size()[:-1] + \
425
+ (self.num_key_value_heads,
426
+ 2 * self.head_dim)
427
+ mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
428
+ (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
429
+
430
+ output_size = (query_layer.size(1),
431
+ query_layer.size(2),
432
+ query_layer.size(0),
433
+ key_layer.size(0))
434
+
435
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
436
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
437
+
438
+ apply_rotary_fn = apply_rotary_pos_emb_torch
439
+
440
+ seq_len = key_layer.shape[0]
441
+ offset = 0
442
+
443
+ if use_cache and layer_past != None:
444
+ past_key, past_value = layer_past
445
+ offset = past_key.shape[0]
446
+ seq_len += offset
447
+
448
+ cos, sin = self.rotary_emb(value_layer, seq_len=seq_len)
449
+
450
+ query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
451
+ if use_cache:
452
+ if layer_past != None:
453
+ past_key, past_value = layer_past
454
+ key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)) ,dim=0)
455
+ value_layer = torch.cat((past_value ,value_layer[-1 ,...].unsqueeze(0)) ,dim = 0)
456
+ layer_past = key_layer ,value_layer
457
+ s, bz, head, dim = value_layer.shape
458
+ s_key = key_layer.shape[0]
459
+ s_query = query_layer.shape[0]
460
+ query_layer = query_layer.reshape((s_query, bz, head, dim))
461
+ key_layer = key_layer.reshape((s_key, bz, head, dim))
462
+
463
+
464
+ if self.config.flash_attn:
465
+ q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
466
+ (query_layer, key_layer, value_layer)]
467
+ context_layer = self.core_attention_flash(q, k, v)
468
+ context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
469
+ else:
470
+ ##[sq, b, np, hn] -> [sq, b * np, hn]
471
+ query_layer = query_layer.reshape(s_query ,bz * self.num_heads, dim)
472
+ # [sk, b, np, hn] -> [sk, b * np, hn]
473
+ key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
474
+ matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), key_layer.transpose(0, 1).transpose(1, 2))
475
+
476
+ attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)
477
+
478
+ input_dtype = attention_scores.dtype
479
+ if input_dtype == torch.float16:
480
+ attention_scores = attention_scores.to(torch.float)
481
+ attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
482
+ attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32
483
+ attention_probs = self.attention_dropout(attention_probs)
484
+ attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)
485
+
486
+ value_layer = value_layer.reshape(s_key ,bz * self.num_heads, dim)
487
+ context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
488
+ context_layer = self._merge_heads(context_layer)
489
+
490
+ output_tensor = self.dense(context_layer)
491
+
492
+ output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
493
+ present = None
494
+ outputs = (output_tensor, present)
495
+ if output_attentions:
496
+ outputs += (attention_probs,)
497
+
498
+ return output_tensor, layer_past
499
+
500
+ class TelechatMLP(nn.Module):
501
+ def __init__(self, config: TelechatConfig):
502
+ super().__init__()
503
+ hidden_size = config.hidden_size
504
+ self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
505
+ self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
506
+ self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
507
+ self.hidden_dropout = config.hidden_dropout
508
+
509
+ def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
510
+ intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
511
+ output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
512
+ return output
513
+
514
+
515
+ class TelechatBlock(nn.Module):
516
+ def __init__(self, config: TelechatConfig ,layer_idx):
517
+ super().__init__()
518
+ hidden_size = config.hidden_size
519
+
520
+ self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
521
+ self.num_heads = config.n_head
522
+ self.layer_idx = layer_idx
523
+ self.self_attention = TelechatAttention(config ,layer_idx)
524
+ self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
525
+
526
+ self.mlp = TelechatMLP(config)
527
+
528
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
529
+ self.hidden_dropout = config.hidden_dropout
530
+
531
+ def forward(
532
+ self,
533
+ hidden_states: torch.Tensor,
534
+ attention_mask: torch.Tensor,
535
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
536
+ use_cache: bool = False,
537
+ output_attentions: bool = False,
538
+ ):
539
+ layernorm_output = self.input_layernorm(hidden_states)
540
+ if self.apply_residual_connection_post_layernorm:
541
+ residual = layernorm_output
542
+ else:
543
+ residual = hidden_states
544
+
545
+ attn_outputs = self.self_attention(
546
+ layernorm_output,
547
+ residual,
548
+ layer_past=layer_past,
549
+ attention_mask=attention_mask,
550
+ use_cache=use_cache,
551
+ output_attentions=output_attentions,
552
+ )
553
+
554
+ attention_output = attn_outputs[0]
555
+ outputs = attn_outputs[1:]
556
+ layernorm_output = self.post_attention_layernorm(attention_output)
557
+
558
+ if self.apply_residual_connection_post_layernorm:
559
+ residual = layernorm_output
560
+ else:
561
+ residual = attention_output
562
+ output = self.mlp(layernorm_output, residual)
563
+
564
+ if use_cache:
565
+ outputs = (output,) + outputs
566
+ else:
567
+ outputs = (output,) + outputs[1:]
568
+
569
+ return outputs
570
+
571
+
572
+ class TelechatPreTrainedModel(PreTrainedModel):
573
+ config_class = TelechatConfig
574
+ base_model_prefix = "transformer"
575
+ supports_gradient_checkpointing = True
576
+ _no_split_modules = ["TelechatBlock"]
577
+ _skip_keys_device_placement = "past_key_values"
578
+
579
+ def __init__(self, *inputs, **kwargs):
580
+ super().__init__(*inputs, **kwargs)
581
+
582
+ def _init_weights(self, module: nn.Module):
583
+ """Initialize the weights."""
584
+ if isinstance(module, nn.Linear):
585
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
586
+ if module.bias is not None:
587
+ module.bias.data.zero_()
588
+
589
+ elif isinstance(module, nn.Embedding):
590
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
591
+ if module.padding_idx is not None:
592
+ module.weight.data[module.padding_idx].zero_()
593
+
594
+ elif isinstance(module, LayerNorm):
595
+ module.bias.data.zero_()
596
+ module.weight.data.fill_(1.0)
597
+
598
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
599
+ if isinstance(module, TelechatModel):
600
+ module.gradient_checkpointing = value
601
+
602
+
603
+ class TelechatModel(TelechatPreTrainedModel):
604
+ def __init__(self, config: TelechatConfig):
605
+ super().__init__(config)
606
+
607
+ self.embed_dim = config.hidden_size
608
+ self.num_heads = config.n_head
609
+ self.config = config
610
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
611
+ if self.config.embed_layernorm:
612
+ self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
613
+
614
+ self.h = nn.ModuleList([TelechatBlock(config ,_) for _ in range(config.num_hidden_layers)])
615
+ self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
616
+ self.gradient_checkpointing = False
617
+ self.post_init()
618
+
619
+
620
+ def get_input_embeddings(self):
621
+ return self.word_embeddings
622
+
623
+ def _prepare_attn_mask(
624
+ self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
625
+ ) -> torch.BoolTensor:
626
+ combined_attention_mask = None
627
+ device = attention_mask.device
628
+ _, src_length = input_shape
629
+
630
+ if src_length > 1:
631
+ combined_attention_mask = _make_causal_mask(
632
+ input_shape, device=device, past_key_values_length=past_key_values_length
633
+ )
634
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
635
+ combined_attention_mask = (
636
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
637
+ )
638
+
639
+ return combined_attention_mask
640
+
641
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
642
+ self.word_embeddings = new_embeddings
643
+
644
+ def forward(
645
+ self,
646
+ input_ids: Optional[torch.LongTensor] = None,
647
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
648
+ attention_mask: Optional[torch.Tensor] = None,
649
+ inputs_embeds: Optional[torch.LongTensor] = None,
650
+ use_cache: Optional[bool] = None,
651
+ output_attentions: Optional[bool] = None,
652
+ output_hidden_states: Optional[bool] = None,
653
+ return_dict: Optional[bool] = None,
654
+ **deprecated_arguments,
655
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
656
+
657
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
658
+ output_hidden_states = (
659
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
660
+ )
661
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
662
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
663
+
664
+
665
+ if input_ids is not None:
666
+ batch_size, seq_length = input_ids.shape
667
+ elif inputs_embeds is not None:
668
+ batch_size, seq_length, _ = inputs_embeds.shape
669
+
670
+ if past_key_values is None:
671
+ past_key_values = tuple([None] * len(self.h))
672
+
673
+
674
+ if inputs_embeds is None:
675
+ inputs_embeds = self.word_embeddings(input_ids)
676
+ hidden_states = inputs_embeds
677
+
678
+ if self.config.embed_layernorm:
679
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
680
+
681
+ presents = () if use_cache else None
682
+ all_self_attentions = () if output_attentions else None
683
+ all_hidden_states = () if output_hidden_states else None
684
+
685
+ if self.gradient_checkpointing and self.training:
686
+ if use_cache:
687
+ use_cache = False
688
+
689
+ seq_length_with_past = seq_length
690
+ past_key_values_length = 0
691
+ if past_key_values[0] is not None:
692
+ past_key_values_length = past_key_values[0][0].shape[2]
693
+ seq_length_with_past = seq_length_with_past + past_key_values_length
694
+ if attention_mask is None:
695
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
696
+ else:
697
+ attention_mask = attention_mask.to(hidden_states.device)
698
+ causal_mask = self._prepare_attn_mask(
699
+ attention_mask,
700
+ input_shape=(batch_size, seq_length),
701
+ past_key_values_length=past_key_values_length,
702
+ )
703
+
704
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
705
+ if output_hidden_states:
706
+ all_hidden_states = all_hidden_states + (hidden_states,)
707
+
708
+ if self.gradient_checkpointing and self.training:
709
+
710
+ def create_custom_forward(module):
711
+ def custom_forward(*inputs):
712
+ # None for past_key_value
713
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
714
+
715
+ return custom_forward
716
+
717
+ outputs = torch.utils.checkpoint.checkpoint(
718
+ create_custom_forward(block),
719
+ hidden_states,
720
+ causal_mask,
721
+ layer_past,
722
+ )
723
+ else:
724
+ outputs = block(
725
+ hidden_states,
726
+ layer_past=layer_past,
727
+ attention_mask=causal_mask,
728
+ use_cache=use_cache,
729
+ output_attentions=output_attentions,
730
+ )
731
+
732
+ hidden_states = outputs[0]
733
+ if use_cache is True:
734
+ presents = presents + (outputs[1],)
735
+
736
+ if output_attentions:
737
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
738
+ hidden_states = self.ln_f(hidden_states)
739
+ if output_hidden_states:
740
+ all_hidden_states = all_hidden_states + (hidden_states,)
741
+ if not return_dict:
742
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
743
+ return BaseModelOutputWithPastAndCrossAttentions(
744
+ last_hidden_state=hidden_states,
745
+ past_key_values=presents,
746
+ hidden_states=all_hidden_states,
747
+ attentions=all_self_attentions,
748
+ )
749
+
750
+
751
+ class TelechatForCausalLM(TelechatPreTrainedModel):
752
+ # _tied_weights_keys = ["lm_head.weight"]
753
+ _keys_to_ignore_on_load_missing = [ r"lm_head.weight"]
754
+ def __init__(self, config: TelechatConfig):
755
+ super().__init__(config)
756
+ self.transformer = TelechatModel(config)
757
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
758
+ self.post_init()
759
+
760
+ def get_output_embeddings(self):
761
+ return self.lm_head
762
+
763
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
764
+ self.lm_head = new_embeddings
765
+
766
+ def prepare_inputs_for_generation(
767
+ self,
768
+ input_ids: torch.LongTensor,
769
+ past_key_values: Optional[torch.Tensor] = None,
770
+ attention_mask: Optional[torch.Tensor] = None,
771
+ inputs_embeds: Optional[torch.Tensor] = None,
772
+ **kwargs,
773
+ ) -> dict:
774
+ if past_key_values:
775
+ input_ids = input_ids[:, -1].unsqueeze(-1)
776
+ if inputs_embeds is not None and past_key_values is None:
777
+ model_inputs = {"inputs_embeds": inputs_embeds}
778
+ else:
779
+ model_inputs = {"input_ids": input_ids}
780
+
781
+ model_inputs.update(
782
+ {
783
+ "past_key_values": past_key_values,
784
+ "use_cache": kwargs.get("use_cache"),
785
+ "attention_mask": attention_mask,
786
+ }
787
+ )
788
+ return model_inputs
789
+
790
+ def forward(
791
+ self,
792
+ input_ids: Optional[torch.LongTensor] = None,
793
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
794
+ attention_mask: Optional[torch.Tensor] = None,
795
+ inputs_embeds: Optional[torch.Tensor] = None,
796
+ labels: Optional[torch.Tensor] = None,
797
+ use_cache: Optional[bool] = None,
798
+ output_attentions: Optional[bool] = None,
799
+ output_hidden_states: Optional[bool] = None,
800
+ return_dict: Optional[bool] = None,
801
+ **deprecated_arguments,
802
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
803
+
804
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
805
+
806
+ transformer_outputs = self.transformer(
807
+ input_ids,
808
+ past_key_values=past_key_values,
809
+ attention_mask=attention_mask,
810
+ inputs_embeds=inputs_embeds,
811
+ use_cache=use_cache,
812
+ output_attentions=output_attentions,
813
+ output_hidden_states=output_hidden_states,
814
+ return_dict=return_dict,
815
+ )
816
+ hidden_states = transformer_outputs[0]
817
+ lm_logits = self.lm_head(hidden_states)
818
+
819
+ loss = None
820
+ if labels is not None:
821
+ labels = labels.to(lm_logits.device)
822
+ shift_logits = lm_logits[..., :-1, :].contiguous()
823
+ shift_labels = labels[..., 1:].contiguous()
824
+ batch_size, seq_length, vocab_size = shift_logits.shape
825
+ loss_fct = CrossEntropyLoss()
826
+ loss = loss_fct(
827
+ shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
828
+ )
829
+
830
+ if not return_dict:
831
+ output = (lm_logits,) + transformer_outputs[1:]
832
+ return ((loss,) + output) if loss is not None else output
833
+
834
+ return CausalLMOutputWithCrossAttentions(
835
+ loss=loss,
836
+ logits=lm_logits,
837
+ past_key_values=transformer_outputs.past_key_values,
838
+ hidden_states=transformer_outputs.hidden_states,
839
+ attentions=transformer_outputs.attentions,
840
+ )
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 2593656832
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model_00001-of-00001.bin",
7
+ "transformer.h.0.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
8
+ "transformer.h.0.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
9
+ "transformer.h.0.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
10
+ "transformer.h.0.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
11
+ "transformer.h.0.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
12
+ "transformer.h.0.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
13
+ "transformer.h.0.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
14
+ "transformer.h.0.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
15
+ "transformer.h.0.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
16
+ "transformer.h.0.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
17
+ "transformer.h.1.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
18
+ "transformer.h.1.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
19
+ "transformer.h.1.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
20
+ "transformer.h.1.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
21
+ "transformer.h.1.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
22
+ "transformer.h.1.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
23
+ "transformer.h.1.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
24
+ "transformer.h.1.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
25
+ "transformer.h.1.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
26
+ "transformer.h.1.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
27
+ "transformer.h.10.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
28
+ "transformer.h.10.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
29
+ "transformer.h.10.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
30
+ "transformer.h.10.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
31
+ "transformer.h.10.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
32
+ "transformer.h.10.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
33
+ "transformer.h.10.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
34
+ "transformer.h.10.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
35
+ "transformer.h.10.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
36
+ "transformer.h.10.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
37
+ "transformer.h.11.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
38
+ "transformer.h.11.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
39
+ "transformer.h.11.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
40
+ "transformer.h.11.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
41
+ "transformer.h.11.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
42
+ "transformer.h.11.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
43
+ "transformer.h.11.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
44
+ "transformer.h.11.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
45
+ "transformer.h.11.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
46
+ "transformer.h.11.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
47
+ "transformer.h.12.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
48
+ "transformer.h.12.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
49
+ "transformer.h.12.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
50
+ "transformer.h.12.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
51
+ "transformer.h.12.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
52
+ "transformer.h.12.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
53
+ "transformer.h.12.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
54
+ "transformer.h.12.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
55
+ "transformer.h.12.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
56
+ "transformer.h.12.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
57
+ "transformer.h.13.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
58
+ "transformer.h.13.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
59
+ "transformer.h.13.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
60
+ "transformer.h.13.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
61
+ "transformer.h.13.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
62
+ "transformer.h.13.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
63
+ "transformer.h.13.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
64
+ "transformer.h.13.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
65
+ "transformer.h.13.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
66
+ "transformer.h.13.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
67
+ "transformer.h.14.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
68
+ "transformer.h.14.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
69
+ "transformer.h.14.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
70
+ "transformer.h.14.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
71
+ "transformer.h.14.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
72
+ "transformer.h.14.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
73
+ "transformer.h.14.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
74
+ "transformer.h.14.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
75
+ "transformer.h.14.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
76
+ "transformer.h.14.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
77
+ "transformer.h.15.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
78
+ "transformer.h.15.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
79
+ "transformer.h.15.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
80
+ "transformer.h.15.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
81
+ "transformer.h.15.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
82
+ "transformer.h.15.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
83
+ "transformer.h.15.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
84
+ "transformer.h.15.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
85
+ "transformer.h.15.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
86
+ "transformer.h.15.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
87
+ "transformer.h.2.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
88
+ "transformer.h.2.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
89
+ "transformer.h.2.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
90
+ "transformer.h.2.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
91
+ "transformer.h.2.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
92
+ "transformer.h.2.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
93
+ "transformer.h.2.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
94
+ "transformer.h.2.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
95
+ "transformer.h.2.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
96
+ "transformer.h.2.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
97
+ "transformer.h.3.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
98
+ "transformer.h.3.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
99
+ "transformer.h.3.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
100
+ "transformer.h.3.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
101
+ "transformer.h.3.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
102
+ "transformer.h.3.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
103
+ "transformer.h.3.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
104
+ "transformer.h.3.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
105
+ "transformer.h.3.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
106
+ "transformer.h.3.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
107
+ "transformer.h.4.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
108
+ "transformer.h.4.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
109
+ "transformer.h.4.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
110
+ "transformer.h.4.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
111
+ "transformer.h.4.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
112
+ "transformer.h.4.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
113
+ "transformer.h.4.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
114
+ "transformer.h.4.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
115
+ "transformer.h.4.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
116
+ "transformer.h.4.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
117
+ "transformer.h.5.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
118
+ "transformer.h.5.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
119
+ "transformer.h.5.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
120
+ "transformer.h.5.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
121
+ "transformer.h.5.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
122
+ "transformer.h.5.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
123
+ "transformer.h.5.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
124
+ "transformer.h.5.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
125
+ "transformer.h.5.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
126
+ "transformer.h.5.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
127
+ "transformer.h.6.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
128
+ "transformer.h.6.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
129
+ "transformer.h.6.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
130
+ "transformer.h.6.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
131
+ "transformer.h.6.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
132
+ "transformer.h.6.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
133
+ "transformer.h.6.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
134
+ "transformer.h.6.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
135
+ "transformer.h.6.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
136
+ "transformer.h.6.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
137
+ "transformer.h.7.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
138
+ "transformer.h.7.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
139
+ "transformer.h.7.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
140
+ "transformer.h.7.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
141
+ "transformer.h.7.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
142
+ "transformer.h.7.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
143
+ "transformer.h.7.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
144
+ "transformer.h.7.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
145
+ "transformer.h.7.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
146
+ "transformer.h.7.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
147
+ "transformer.h.8.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
148
+ "transformer.h.8.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
149
+ "transformer.h.8.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
150
+ "transformer.h.8.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
151
+ "transformer.h.8.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
152
+ "transformer.h.8.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
153
+ "transformer.h.8.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
154
+ "transformer.h.8.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
155
+ "transformer.h.8.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
156
+ "transformer.h.8.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
157
+ "transformer.h.9.input_layernorm.weight": "pytorch_model_00001-of-00001.bin",
158
+ "transformer.h.9.mlp.down_proj.bias": "pytorch_model_00001-of-00001.bin",
159
+ "transformer.h.9.mlp.down_proj.weight": "pytorch_model_00001-of-00001.bin",
160
+ "transformer.h.9.mlp.gate_proj.weight": "pytorch_model_00001-of-00001.bin",
161
+ "transformer.h.9.mlp.up_proj.weight": "pytorch_model_00001-of-00001.bin",
162
+ "transformer.h.9.post_attention_layernorm.weight": "pytorch_model_00001-of-00001.bin",
163
+ "transformer.h.9.self_attention.dense.bias": "pytorch_model_00001-of-00001.bin",
164
+ "transformer.h.9.self_attention.dense.weight": "pytorch_model_00001-of-00001.bin",
165
+ "transformer.h.9.self_attention.key_value.weight": "pytorch_model_00001-of-00001.bin",
166
+ "transformer.h.9.self_attention.query.weight": "pytorch_model_00001-of-00001.bin",
167
+ "transformer.ln_f.weight": "pytorch_model_00001-of-00001.bin",
168
+ "transformer.word_embeddings.weight": "pytorch_model_00001-of-00001.bin"
169
+ }
170
+ }
pytorch_model_00001-of-00001.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4322209dc98fc730dec8df8ddd8754dd0b9d60025e172b107d4ccd495cbb3b27
3
+ size 2593711876
specail_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<_start>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<_end>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<_pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<_unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_telechat3.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import Any, Dict, List, Optional, Tuple
4
+ import sentencepiece as spm
5
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
6
+ from transformers.utils import logging
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
11
+
12
+ # TODO: when we get download url from huggingface, refresh the map
13
+ PRETRAINED_VOCAB_FILES_MAP = {
14
+ "vocab_file": {},
15
+ "tokenizer_file": {},
16
+ }
17
+
18
+
19
+ class TelechatTokenizer(PreTrainedTokenizer):
20
+
21
+ vocab_files_names = VOCAB_FILES_NAMES
22
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
23
+ model_input_names = ["input_ids", "attention_mask"]
24
+
25
+ def __init__(
26
+ self,
27
+ vocab_file,
28
+ unk_token="<unk>",
29
+ bos_token="<_start>",
30
+ eos_token="<_end>",
31
+ pad_token="<_pad>",
32
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
33
+ add_bos_token=True,
34
+ add_eos_token=False,
35
+ clean_up_tokenization_spaces=False,
36
+ **kwargs,
37
+ ):
38
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
39
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
40
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
41
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
42
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
43
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
44
+ self.sp_model.Load(vocab_file)
45
+ super().__init__(
46
+ bos_token=bos_token,
47
+ eos_token=eos_token,
48
+ unk_token=unk_token,
49
+ pad_token=pad_token,
50
+ add_bos_token=add_bos_token,
51
+ add_eos_token=add_eos_token,
52
+ sp_model_kwargs=self.sp_model_kwargs,
53
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
54
+ **kwargs,
55
+ )
56
+ self.vocab_file = vocab_file
57
+ self.add_bos_token = add_bos_token
58
+ self.add_eos_token = add_eos_token
59
+
60
+
61
+ def __getstate__(self):
62
+ state = self.__dict__.copy()
63
+ state["sp_model"] = None
64
+ return state
65
+
66
+ def __setstate__(self, d):
67
+ self.__dict__ = d
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(self.vocab_file)
70
+
71
+ @property
72
+ def vocab_size(self):
73
+ """Returns vocab size"""
74
+ return self.sp_model.get_piece_size()
75
+
76
+ def get_vocab(self):
77
+ """Returns vocab as a dict"""
78
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
79
+ vocab.update(self.added_tokens_encoder)
80
+ return vocab
81
+
82
+ def _tokenize(self, text):
83
+ """Returns a tokenized string."""
84
+ return self.sp_model.encode(text, out_type=str)
85
+
86
+ def _convert_token_to_id(self, token):
87
+ """Converts a token (str) in an id using the vocab."""
88
+ return self.sp_model.piece_to_id(token)
89
+
90
+ def _convert_id_to_token(self, index):
91
+ """Converts an index (integer) in a token (str) using the vocab."""
92
+ token = self.sp_model.IdToPiece(index)
93
+ return token
94
+
95
+ def convert_tokens_to_string(self, tokens):
96
+ """Converts a sequence of tokens (string) in a single string."""
97
+ current_sub_tokens = []
98
+ out_string = ""
99
+ prev_is_special = False
100
+ for i, token in enumerate(tokens):
101
+ # make sure that special tokens are not decoded using sentencepiece model
102
+ if token in self.all_special_tokens:
103
+ if not prev_is_special and i != 0:
104
+ out_string += " "
105
+ out_string += self.sp_model.decode(current_sub_tokens) + token
106
+ prev_is_special = True
107
+ current_sub_tokens = []
108
+ else:
109
+ current_sub_tokens.append(token)
110
+ prev_is_special = False
111
+ out_string += self.sp_model.decode(current_sub_tokens)
112
+ return out_string
113
+
114
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
115
+ """
116
+ Save the vocabulary and special tokens file to a directory.
117
+
118
+ Args:
119
+ save_directory (`str`):
120
+ The directory in which to save the vocabulary.
121
+
122
+ Returns:
123
+ `Tuple(str)`: Paths to the files saved.
124
+ """
125
+ if not os.path.isdir(save_directory):
126
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
127
+ return
128
+ out_vocab_file = os.path.join(
129
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
130
+ )
131
+
132
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
133
+ copyfile(self.vocab_file, out_vocab_file)
134
+ elif not os.path.isfile(self.vocab_file):
135
+ with open(out_vocab_file, "wb") as fi:
136
+ content_spiece_model = self.sp_model.serialized_model_proto()
137
+ fi.write(content_spiece_model)
138
+
139
+ return (out_vocab_file,)
140
+
141
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
142
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
143
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
144
+
145
+ output = bos_token_id + token_ids_0 + eos_token_id
146
+
147
+ if token_ids_1 is not None:
148
+ output = output + bos_token_id + token_ids_1 + eos_token_id
149
+
150
+ return output
151
+
152
+ def get_special_tokens_mask(
153
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
154
+ ) -> List[int]:
155
+ """
156
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
157
+ special tokens using the tokenizer `prepare_for_model` method.
158
+
159
+ Args:
160
+ token_ids_0 (`List[int]`):
161
+ List of IDs.
162
+ token_ids_1 (`List[int]`, *optional*):
163
+ Optional second list of IDs for sequence pairs.
164
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
165
+ Whether or not the token list is already formatted with special tokens for the model.
166
+
167
+ Returns:
168
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
169
+ """
170
+ if already_has_special_tokens:
171
+ return super().get_special_tokens_mask(
172
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
173
+ )
174
+
175
+ bos_token_id = [1] if self.add_bos_token else []
176
+ eos_token_id = [1] if self.add_eos_token else []
177
+
178
+ if token_ids_1 is None:
179
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
180
+ return (
181
+ bos_token_id
182
+ + ([0] * len(token_ids_0))
183
+ + eos_token_id
184
+ + bos_token_id
185
+ + ([0] * len(token_ids_1))
186
+ + eos_token_id
187
+ )
188
+
189
+ def create_token_type_ids_from_sequences(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
191
+ ) -> List[int]:
192
+ """
193
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
194
+ sequence pair mask has the following format:
195
+
196
+ ```
197
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
198
+ | first sequence | second sequence |
199
+ ```
200
+
201
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
202
+
203
+ Args:
204
+ token_ids_0 (`List[int]`):
205
+ List of ids.
206
+ token_ids_1 (`List[int]`, *optional*):
207
+ Optional second list of IDs for sequence pairs.
208
+
209
+ Returns:
210
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
211
+ """
212
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
213
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
214
+
215
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
216
+
217
+ if token_ids_1 is not None:
218
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
219
+
220
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c86d881f9a94b1c50bf25f8f987accea9ec2a1be74529f0240d8e13e66aa3d
3
+ size 1978781
tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name_or_path": "ChinaTelecom/telechat3-7b",
3
+ "tokenizer_class": "TelechatTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_telechat3.TelechatTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "add_bos_token": false,
11
+ "add_eos_token": false,
12
+ "use_fast": false,
13
+ "clean_up_tokenization_spaces": false,
14
+ "eos_token": {
15
+ "__type": "AddedToken",
16
+ "content": "<_start>",
17
+ "lstrip": false,
18
+ "normalized": true,
19
+ "rstrip": false,
20
+ "single_word": true
21
+ },
22
+ "model_max_length": 100000000,
23
+ "sp_model_kwargs": {},
24
+ "pad_token": {
25
+ "__type": "AddedToken",
26
+ "content": "<_pad>",
27
+ "lstrip": false,
28
+ "normalized": true,
29
+ "rstrip": false,
30
+ "single_word": true
31
+ },
32
+ "unk_token": {
33
+ "__type": "AddedToken",
34
+ "content": "<_end>",
35
+ "lstrip": false,
36
+ "normalized": true,
37
+ "rstrip": false,
38
+ "single_word": true
39
+ }
40
+ }